3,790 research outputs found

    Unquenching the Quark Model and Screened Potentials

    Full text link
    The low-lying spectrum of the quark model is shown to be robust under the effects of `unquenching'. In contrast, the use of screened potentials is shown to be of limited use in models of hadrons. Applications to unquenching the lattice Wilson loop potential and to glueball mixing in the adiabatic hybrid spectrum are also presented.Comment: 6 pages, 3 ps figures, revtex. Version to appear in J. Phys.

    Molecular interpretation of the Pc(4440) and Pc(4457) states

    Get PDF
    A molecular model of the Pc(4457)P_c(4457) and Pc(4440)P_c(4440) LHCb states is proposed. The model relies on channels coupled by long range pion-exchange dynamics with features that depend crucially on the novel addition of the Λc(2595)Dˉ\Lambda_c(2595)\bar D channel. A striking prediction of the model is the unusual combination of quantum numbers JP(4457)=1/2+J^P(4457) = 1/2^+ and JP(4440)=3/2−J^P(4440) = 3/2^-. Unlike in other models, a simultaneous description of both states is achieved without introducing additional short-range interactions. The model also gives a natural explanation for the relative widths of the states. We show that the usual molecular scenarios cannot explain the production rate of PcP_c states in Λb\Lambda_b decays, and that this can be resolved by including Λc(2595)Dˉ\Lambda_c(2595)\bar D and related channels. Experimental tests and other states are discussed in the conclusions.Comment: 15 pages, 6 figures. Some new material in the conclusions, and a typo corrected in Table I

    Innovation as a Nonlinear Process, the Scientometric Perspective, and the Specification of an "Innovation Opportunities Explorer"

    Get PDF
    The process of innovation follows non-linear patterns across the domains of science, technology, and the economy. Novel bibliometric mapping techniques can be used to investigate and represent distinctive, but complementary perspectives on the innovation process (e.g., "demand" and "supply") as well as the interactions among these perspectives. The perspectives can be represented as "continents" of data related to varying extents over time. For example, the different branches of Medical Subject Headings (MeSH) in the Medline database provide sources of such perspectives (e.g., "Diseases" versus "Drugs and Chemicals"). The multiple-perspective approach enables us to reconstruct facets of the dynamics of innovation, in terms of selection mechanisms shaping localizable trajectories and/or resulting in more globalized regimes. By expanding the data with patents and scholarly publications, we demonstrate the use of this multi-perspective approach in the case of RNA Interference (RNAi). The possibility to develop an "Innovation Opportunities Explorer" is specified.Comment: Technology Analysis and Strategic Management (forthcoming in 2013

    The running mass msm_s at low scalefrom the heavy-light meson decay constants

    Get PDF
    It is shown that a 25(20)% difference between the decay constants fDs(fBs)f_{D_s}(f_{B_s}) and fD(fB)f_D(f_B) occurs due to large differences in the pole masses of the ss and d(u)d(u) quarks. The values ηD=fDs/fD≈1.23(15)\eta_D =f_{D_s}/f_D\approx 1.23(15), recently observed in the CLEO experiment, and ηB=fBs/fB≈1.20\eta_B=f_{B_s}/f_B\approx 1.20, obtained in unquenched lattice QCD, can be reached only if the running mass msm_s at low scale is ms(∌0.5m_s(\sim 0.5 GeV)=170−200= 170 - 200 MeV. Our results follow from the analytical expression for the pseudoscalar decay constant fPf_{\rm P} based on the path-integral representation of the meson Green's function.Comment: 6 pages, no figures; revtex

    Photoinduced charge separation in Q1D heterojunction materials: Evidence for electron-hole pair separation in mixed-halide MXMX solids

    Full text link
    Resonance Raman experiments on doped and photoexcited single crystals of mixed-halide MXMX complexes (MM=Pt; XX=Cl,Br) clearly indicate charge separation: electron polarons preferentially locate on PtBr segments while hole polarons are trapped within PtCl segments. This polaron selectivity, potentially very useful for device applications, is demonstrated theoretically using a discrete, 3/4-filled, two-band, tight-binding, extended Peierls-Hubbard model. Strong hybridization of the PtCl and PtBr electronic bands is the driving force for separation.Comment: n LaTeX, figures available by mail from JTG ([email protected]

    Dissociation cross sections of ground-state and excited charmonia with light mesons in the quark model

    Get PDF
    We present numerical results for the dissociation cross sections of ground-state, orbitally- and radially-excited charmonia in collisions with light mesons. Our results are derived using the nonrelativistic quark model, so all parameters are determined by fits to the experimental meson spectrum. Examples of dissociation into both exclusive and inclusive final states are considered. The dissociation cross sections of several C=(+) charmonia may be of considerable importance for the study of heavy ion collisions, since these states are expected to be produced more copiously than the J/psi. The relative importance of the productions of ground-state and orbitally-excited charmed mesons in a pion-charmonium collision is demonstrated through the s\sqrt {s}-dependent charmonium dissociation cross sections.Comment: 9 pages, 8 figure

    Constructing Hybrid Baryons with Flux Tubes

    Get PDF
    Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.Comment: 4 pages, RevTeX. Submitted to Physical Review Letter

    Conjugation-Length Dependence of Spin-Dependent Exciton Formation Rates in Pi-Conjugated Oligomers and Polymers

    Full text link
    We have measured the ratio, r = σS/σT\sigma_S/\sigma_T of the formation cross section, σ\sigma of singlet (σS\sigma_S) and triplet (σT\sigma_T) excitons from oppositely charged polarons in a large variety of π\pi-conjugated oligomer and polymer films, using the photoinduced absorption and optically detected magnetic resonance spectroscopies. The ratio r is directly related to the singlet exciton yield, which in turn determines the maximum electroluminescence quantum efficiency in organic light emitting diodes (OLED). We discovered that r increases with the conjugation length, CL; in fact a universal dependence exists in which r−1r^{-1} depends linearly on CL−1CL^{-1}, irrespective of the chain backbone structure. These results indicate that π\pi-conjugated polymers have a clear advantage over small molecules in OLED applications.Comment: 5 pages, 4 figure
    • 

    corecore