3 research outputs found

    Rhodium-Catalyzed Carbonylation of 3-Acyloxy-1,4-enynes for the Synthesis of Cyclopentenones

    No full text
    Functionalized cyclopentenones were synthesized by a Rh-catalyzed carbonylation of 3-acyloxy-1,4-enynes, derived from alkynes and α,β-unsaturated aldehydes. The reaction involved a Saucy–Marbet 1,3-acyloxy migration of propargyl esters and a [4 + 1] cycloaddition of the resulting acyloxy substituted vinylallene with CO

    Rhodium-Catalyzed Chemo- and Regioselective Cross-Dimerization of Two Terminal Alkynes

    No full text
    Cross-dimerization of terminal arylacetylenes and terminal propargylic alcohols/amides has been achieved in the presence of a rhodium catalyst. This method features high chemo- and regioselectivities rendering convenient and atom economical access to functionalized enynes

    Rhodium-Catalyzed Intra- and Intermolecular [5 + 2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkyne with Concomitant 1,2-Acyloxy Migration

    No full text
    A new type of rhodium-catalyzed [5 + 2] cycloaddition was developed for the synthesis of seven-membered rings with diverse functionalities. The ring formation was accompanied by a 1,2-acyloxy migration event. The five- and two-carbon components of the cycloaddition are 3-acyloxy-1,4-enynes (ACEs) and alkynes, respectively. Cationic rhodium­(I) catalysts worked most efficiently for the intramolecular cycloaddition, while only neutral rhodium­(I) complexes could facilitate the intermolecular reaction. In both cases, electron-poor phosphite or phosphine ligands often improved the efficiency of the cycloadditions. The scope of ACEs and alkynes was investigated in both the intra- and intermolecular reactions. The resulting seven-membered-ring products have three double bonds that could be selectively functionalized
    corecore