185 research outputs found

    Transmorphic phage-guided systemic delivery of TNFα gene for the treatment of human pediatric medulloblastoma

    Get PDF
    Medulloblastoma is the most common childhood brain tumor with an unfavorable prognosis and limited options of harmful treatments that are associated with devastating long-term side effects. Therefore, the development of safe, noninvasive, and effective therapeutic approaches is required to save the quality of life of young medulloblastoma survivors. We postulated that therapeutic targeting is a solution. Thus, we used a recently designed tumor-targeted bacteriophage (phage)-derived particle, named transmorphic phage/AAV, TPA, to deliver a transgene expressing the tumor necrosis factor-alpha (TNFα) for targeted systemic therapy of medulloblastoma. This vector was engineered to display the double-cyclic RGD4C ligand to selectively target tumors after intravenous administration. Furthermore, the lack of native phage tropism in mammalian cells warrants safe and selective systemic delivery to the tumor microenvironment. In vitro RGD4C.TPA.TNFα treatment of human medulloblastoma cells generated efficient and selective TNFα expression, subsequently triggering cell death. Combination with the chemotherapeutic drug cisplatin used clinically against medulloblastoma resulted in augmented effect through the enhancement of TNFα gene expression. Systemic administration of RGD4C.TPA.TNFα to mice-bearing subcutaneous medulloblastoma xenografts resulted in selective tumor homing of these particles and consequently, targeted tumor expression of TNFα, apoptosis, and destruction of the tumor vasculature. Thus, our RGD4C.TPA.TNFα particle provides selective and efficient systemic delivery of TNFα to medulloblastoma, yielding a potential TNFα anti-medulloblastoma therapy while sparing healthy tissues from the systemic toxicity of this cytokine

    Validation of the Thai Osteoporosis Foundation and Royal College of Orthopaedic Surgeons of Thailand Clinical Practice Guideline for bone mineral density measurement in postmenopausal women

    Get PDF
    AbstractObjectiveThe primary objective of this study was to determine the sensitivity, specificity, and predictive values of the Thai Osteoporosis Foundation (TOPF) and Royal College of Orthopaedic Surgeons of Thailand (RCOST) Clinical Practice Guideline for bone mineral density (BMD) measurement for the detection of postmenopausal osteoporosis. Its secondary objective was to find better indicators to detect postmenopausal osteoporosis.MethodsPostmenopausal women were enrolled in this study between June and December 2014. The clinical risk factors following TOPF and RCOST Clinical Practice Guideline for BMD measurement were collected. Bone mineral density was measured using dual energy X-ray absorptiometry.ResultsFour hundred postmenopausal women were enrolled in the study. The mean age of the studied population was 66.16 ± 6.04 years. Twenty-seven percent of the participants had either osteoporosis of the lumbar spine, femoral neck, or total hip, of which 13.3% had osteoporosis at the lumbar spine, 21.3% had osteoporosis at the femoral neck, and 2.5% had osteoporosis of the total hip. The sensitivity and specificity for detecting osteoporosis of the whole TOPF and RCOST guideline were 96.2% and 16.7%, 98.8% and 18.7%, 90.0% and 15.1%, and 97.2% and 19.5% at the lumbar spine, femoral neck, total hip, and any sites, respectively. Multiple logistic regression analysis revealed that only OSTA ≤−1, osteopenia on X-ray and low trauma fracture after age of 40 years were significant clinical risk factors in the detection of postmenopausal osteoporosis. The Receiver Operating Characteristics (ROC) curve was used to obtain the optimum probability value of osteoporosis at any sites which revealed that the probability value of 0.2222236 would have a sensitivity of 67% and specificity of 62% as the optimal cut point to detect osteoporosis. A simple flow diagram of “OSTA ≤−1”, “Osteopenia on X-ray” and “A history of low trauma fracture after age of 40 years” was developed as a better trade-off guideline for BMD measurement.ConclusionsThis study revealed that the TOPF and RCOST guideline for BMD measurement provided a high true positive rate of disease detection but with an expense of high false positive rate. The simple flow diagram was proposed as a more appropriate guideline for BMD measurement in postmenopausal women

    Doxorubicin improves cancer cell targeting by filamentous phage gene delivery vectors.

    Get PDF
    Merging targeted systemic gene delivery and systemic chemotherapy against cancer, chemovirotherapy, has the potential to improve chemotherapy and gene therapy treatments and overcome cancer resistance. We introduced a bacteriophage (phage) vector, named human adeno-associated virus (AAV)/phage or AAVP, for the systemic targeting of therapeutic genes to cancer. The vector was designed as a hybrid between a recombinant adeno-associated virus genome (rAAV) and a filamentous phage capsid. To achieve tumor targeting, we displayed on the phage capsid the double-cyclic CDCRGDCFC (RGD4C) ligand that binds the alpha-V/beta-3 (αvβ3) integrin receptor. Here, we investigated a combination of doxorubicin chemotherapeutic drug and targeted gene delivery by the RGD4C/AAVP vector. Firstly, we showed that doxorubicin boosts transgene expression from the RGD4C/AAVP in two-dimensional (2D) cell cultures and three-dimensional (3D) tumor spheres established from human and murine cancer cells, while preserving selective gene delivery by RGD4C/AAVP. Next, we confirmed that doxorubicin does not increase vector attachment to cancer cells nor vector cell entry. In contrast, doxorubicin may alter the intracellular trafficking of the vector by facilitating nuclear accumulation of the RGD4C/AAVP genome through destabilization of the nuclear membrane. Finally, a combination of doxorubicin and RGD4C/AAVP-targeted suicide gene therapy exerts a synergistic effect to destroy human and murine tumor cells in 2D and 3D tumor sphere settings

    Targeting human osteoarthritic chondrocytes with ligand directed bacteriophage-based particles

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease characterized by progressive deterioration and loss of articular cartilage. There is currently no treatment to reverse the onset of OA. Thus, we developed a targeted delivery strategy to transfer genes into primary human chondrocytes as a proof-of-concept study. We displayed a chondrocyte-affinity peptide (CAP) on the pIII minor coat protein of the M13 filamentous bacteriophage (phage)-based particle carrying a mammalian transgene cassette under cytomegalovirus CMV promoter and inverted terminal repeats (ITRs) cis elements of adeno-associated virus serotype 2 (AAV-2). Primary human articular chondrocytes (HACs) were used as an in vitro model, and the selectivity and binding properties of the CAP ligand in relation to the pathogenic conditions of HACs were characterized. We found that the CAP ligand is highly selective toward pathogenic HACs. Furthermore, the stability, cytotoxicity, and gene delivery efficacy of the CAP-displaying phage (CAP.Phage) were evaluated. We found that the phage particle is stable under a wide range of temperatures and pH values, while showing no cytotoxicity to HACs. Importantly, the CAP.Phage particle, carrying a secreted luciferase (Lucia) reporter gene, efficiently and selectively delivered transgene expression to HACs. In summary, it was found that the CAP ligand preferably binds to pathogenic chondrocytes, and the CAP.Phage particle successfully targets and delivers transgene to HACs

    Bio-electrospraying and aerodynamically assisted bio-jetting the model eukaryotic Dictyostelium discoideum: assessing stress and developmental competency post treatment

    Get PDF
    Bio-electrospraying (BES) and aerodynamically assisted bio-jetting (AABJ) have recently been established as important novel biospray technologies for directly manipulating living cells. To elucidate their potential in medical and clinical sciences, these bio-aerosol techniques have been subjected to increasingly rigorous investigations. In parallel to these studies, we wish to introduce these unique biotechnologies for use in the basic biological sciences, for handling a wide range of cell types and systems, thus increasing the range and the scope of these techniques for modern research. Here, the authors present the analysis of the new use of these biospray techniques for the direct handling of the simple eukaryotic biomedical model organism Dictyostelium discoideum. These cells are widely used as a model for immune cell chemotaxis and as a simple model for development. We demonstrate that AABJ of these cells did not cause cell stress, as defined by the stress-gene induction, nor affect cell development. Furthermore, although BES induced the increased expression of one stress-related gene (gapA), this was not a generalized stress response nor did it affect cell development. These data suggest that these biospray techniques can be used to directly manipulate single cells of this biomedical model without inducing a generalized stress response or perturbing later development

    Recent advances in sulfotransferase enzyme activity assays

    Get PDF
    Sulfotransferases are enzymes that catalyze the transfer of sulfo groups from a donor, for example 3′-phosphoadenosine 5′-phosphosulfate, to an acceptor, for example the amino or hydroxyl groups of a small molecule, xenobiotic, carbohydrate, or peptide. These enzymes are important targets in the design of novel therapeutics for treatment of a variety of diseases. This review examines assays used for this important class of enzyme, paying particular attention to sulfotransferases acting on carbohydrates and peptides and the major challenges associated with their analysis

    Congenital anomalies in low- and middle-income countries: the unborn child of global surgery.

    Get PDF
    Surgically correctable congenital anomalies cause a substantial burden of global morbidity and mortality. These anomalies disproportionately affect children in low- and middle-income countries (LMICs) due to sociocultural, economic, and structural factors that limit the accessibility and quality of pediatric surgery. While data from LMICs are sparse, available evidence suggests that the true human and financial cost of congenital anomalies is grossly underestimated and that pediatric surgery is a cost-effective intervention with the potential to avert significant premature mortality and lifelong disability
    corecore