3 research outputs found

    AR2, a novel automatic muscle artifact reduction software method for ictal EEG interpretation: Validation and comparison of performance with commercially available software.

    Get PDF
    Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (

    Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey

    No full text
    Abstract Background The neocortical commissures have a fundamental role in functional integration across the cerebral hemispheres. We investigated whether commissural projections in prefrontal cortices are organized according to the same or different rules as those within the same hemisphere, by quantitatively comparing density, topography, and laminar origin of contralateral and ipsilateral projections, labeled after unilateral injection of retrograde tracers in prefrontal areas. Results Commissural projection neurons constituted less than one third of the ipsilateral. Nevertheless, projections from the two hemispheres were strongly correlated in topography and relative density. We investigated to what extent the distribution of contralateral projections depended on: (a) geographic proximity of projection areas to the area homotopic to the injection site; (b) the structural type of the linked areas, based on the number and neuronal density of their layers. Although both measures were good predictors, structural type was a comparatively stronger determinant of the relative distribution and density of projections. Ipsilateral projection neurons were distributed in the superficial (II-III) and deep (V-VI) layers, in proportions that varied across areas. In contrast, contralateral projection neurons were found mostly in the superficial layers, but still showed a gradient in their distribution within cortical layers that correlated significantly with cortical type, but not with geographic proximity to the homotopic area. Conclusion The organization of ipsilateral and contralateral prefrontal projections is similar in topography and relative density, differing only by higher overall density and more widespread laminar origin of ipsilateral than contralateral projections. The projections on both sides are highly correlated with the structural architecture of the linked areas, and their remarkable organization is likely established by punctuated development of distinct cortical types. The preponderance of contralateral projections from layer III may be traced to the late development of the callosal system, whose function may be compromised in diseases that have their root late in ontogeny.</p
    corecore