3 research outputs found

    Synthesis and Characterization of Non-Linear Optical Crystal of Manganese Mercury Thiocyanate Glycol Monomethyl Ether

    No full text
    <div><p>The design and synthesis of organic nonlinear optical (NLO) crystals are a promising area of current research in materials science. Organic materials are found to possess better non linear optical properties when compared to inorganic materials. Recently, there has been a widespread interest in the metal-organic coordination compounds, which are a combination of metal and organic ligands, having exciting NLO properties. Non-linear optical single crystals of Manganese mercury thiocyanate glycol monomethyl ether (MMTG) were grown from a mixed solvent of glycol monomethyl ether and water by slow evaporation method. Optimum conditions for the growth at ambient temperature were found by investigating different growth parameters. The percentage of optical transmittance by the grown crystal was ascertained by a UV-visible spectral study. The growth features of MMTG crystal was observed by Field Emission Scanning Electron Microscopy technique and Epifluorescence studies for the same were carried out for the first time thus revealing the excitation of the sample around 545 nm. Dielectric measurements on MMTG single crystal were carried out for various frequencies at different temperatures.</p></div

    Preparation and Characterization of Nickel ferrite Nanoparticles via Co-precipitation Method

    No full text
    <div><p>Nickel ferrite (NiFe2O4) nanoparticles were synthesized using co-precipitation method. The X-ray diffraction (XRD) pattern was used to determine the structure of NiFe2O4 nanoparticles. The presence of NiFe2O4 nanoparticles was confirmed by the FT-IR spectrum. The details of the surface morphology of NiFe2O4 nanoparticles were obtained by Scanning Electron Microscopic analysis. The particle size of the NiFe2O4 nanoparticles could be determined by means of Transmission Electron Microscopy. This work aimed at the investigation of the dielectric properties such as the dielectric loss and the dielectric constant of NiFe2O4 nanoparticles at varied frequencies and temperatures. In addition, the magnetic properties of the NiFe2O4 nanoparticles were studied.</p></div

    Preparation and Characterization of Nickel ferrite Nanoparticles via Co-precipitation Method

    No full text
    <div><p>Nickel ferrite (NiFe2O4) nanoparticles were synthesized using co-precipitation method. The X-ray diffraction (XRD) pattern was used to determine the structure of NiFe2O4 nanoparticles. The presence of NiFe2O4 nanoparticles was confirmed by the FT-IR spectrum. The details of the surface morphology of NiFe2O4 nanoparticles were obtained by Scanning Electron Microscopic analysis. The particle size of the NiFe2O4 nanoparticles could be determined by means of Transmission Electron Microscopy. This work aimed at the investigation of the dielectric properties such as the dielectric loss and the dielectric constant of NiFe2O4 nanoparticles at varied frequencies and temperatures. In addition, the magnetic properties of the NiFe2O4 nanoparticles were studied.</p></div
    corecore