3 research outputs found

    Control Of Hydrogen Sulfide Emissionsusing Autotrophic Denitrificationlandfill Biocovers

    Get PDF
    Hydrogen sulfide (H2S), a major odorous component emitted from construction and demolition debris landfills, has received increasing attention. Besides its unpleasant odor, long-term exposure to a very low concentration of H2S can cause a public health issue. Although cover materials such as soil and compost are recommended to be used routinely to control an odor problem from the landfills, the problem still remains. Autotrophic denitrification may have environmental applications including treatment of water, groundwater, wastewater or gaseous streams contaminated with sulfur and/or nitrogen compounds. However, there have been no studies reported in the literature on H2S removal using autotrophic denitrification from landfills. This study, therefore, investigated the application of autotrophic denitrification incorporated into landfill covers in order to evaluate the feasibility of controlling H2S emissions generated from landfills. Research was investigated by two techniques, microcosm and laboratory-scale column studies. The microcosm experiments were conducted to evaluate the kinetics of autotrophic denitrification in various cover materials with H2S-nitrate as electron donor-acceptor couple. Cover materials including soil, compost and sand were tested and nitrate was added. Based on the microcosm study results, the addition of nitrate into soil and compost can stimulate indigenous autotrophic denitrifying bacteria which are capable of H2S oxidation biologically under anoxic conditions. Results also demonstrated that some amount of H2S can be removed physically and chemically by soil or compost. There was no H2S removal observed in sand microcosms. Rapid H2S oxidation to sulfate was achieved, especially in soil. Zero-order kinetics described the H2S oxidation rate in soil and compost microcosms. The rates of sulfide oxidation under autotrophic denitrification in soil and compost were 2.57 mg H2S/d-g dry soil and 0.17 mg H2S/d-g dry compost, respectively. To further explore H2S removal in a landfill biocover, two sets of column experiments were run. The first set of columns contained seven cm of soil. The autotrophic column was prepared with 1.94 mg KNO3/g dry soil; an identical control column was prepared without nitrate. A gas stream was introduced to the columns with a H2S concentration of 930 ppm. The second set contained seven cm of soil, with both an autotrophic (0.499 mg KNO3/g dry soil) and a control column. Influent H2S concentration was 140 ppm for the second set. Column studies supported the results of microcosm studies; removal of H2S was observed in all columns due to the capacity for soil to absorb H2S, however autotrophic columns removed significantly more. The higher concentration of H2S resulted in partial oxidation to elemental sulfur, while sulfate was found at levels predicted by stoichiometric relationships at the lower concentration. H2S oxidation in the column with higher loading was found to follow zero-order kinetics. The rate of H2S oxidation was 0.46 mg H2S removed/d-g dry soil. Economic comparison of cover systems including autotrophic denitrification, soil amended with lime, fine concrete, and compost covers were analyzed. Based on a case-study landfill area of 0.04 km2, the estimated H2S emissions of 80,900 kg over the 15-year period and costs of active cover system components (ammonium nitrate fertilizer, lime, concrete and compost), autotrophic denitrification cover was determined to be the most cost-effective method for controlling H2S emissions from landfills

    Control Of Hydrogen Sulfide Emissions Using Autotrophic Denitrification Landfill Biocovers: Engineering Applications

    No full text
    Hydrogen sulfide (H2S) emitted from construction and demolition waste landfills has received increasing attention. Besides its unpleasant odor, longterm exposure to a very low concentration of H2S can cause a public health issue. In the case of construction and demolition (C&D) waste landfills, where gas collection systems are not normally required, the generated H2S is typically not controlled and the number of treatment processes to control H2S emissions in situ is limited. An attractive alternative may be to use chemically or biologically active landfill covers. A few studies using various types of cover materials to attenuate H2S emissions demonstrated that H2S emissions can be effectively reduced. In this study, therefore, the costs and benefits of H2S-control cover systems including compost, soil amended with lime, fine concrete, and autotrophic denitrification were evaluated. Based on a case-study landfill area of 0. 04 km2, the estimated H2S emissions of 80900 kg over the 15-year period and costs of active cover system components (ammonium nitrate fertilizer for autotrophic denitrification cover, lime, fine concrete, and compost), ammonium nitrate fertilizer is the most cost effective, followed by hydrated lime, fine concrete, and yard waste compost. Fine concrete and yard waste compost covers are expensive measures to control H2S emissions because of the large amount of materials needed to create a cover. Controlling H2S emissions using fine concrete and compost is less expensive at landfills that provide on-site concrete recovery and composting facilities; however, ammonium nitrate fertilizer or hydrated lime would still be more cost effective applications. ÂĐ 2011 Higher Education Press and Springer-Verlag Berlin Heidelberg

    āļĻāļąāļāļĒāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđāļĨāļ°āļˆāļĨāļ™āļžāļĨāļĻāļēāļŠāļ•āļĢāđŒāļ‚āļ­āļ‡āļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢāđāļĨāļ°āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢ Biochemical Methane Potential and Kinetics on Anaerobic Co-digestion of Food Waste and Cellulose-based Food Packaging Product

    No full text
    āļāļēāļĢāļĒāđˆāļ­āļĒāļŠāļĨāļēāļĒāļ āļēāļĒāđƒāļ•āđ‰āļŠāļ āļēāļ§āļ°āđ„āļĢāđ‰āļ­āļēāļāļēāļĻāđ‚āļ”āļĒāļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļīāļŠāļđāļˆāļ™āđŒāđāļĨāđ‰āļ§āļ§āđˆāļēāđ€āļ›āđ‡āļ™āļ­āļĩāļāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŦāļ™āļķāđˆāļ‡āļ—āļĩāđˆāļŠāđˆāļ§āļĒāđ€āļžāļīāđˆāļĄāļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđƒāļŦāđ‰āļŠāļđāļ‡āļ‚āļķāđ‰āļ™āđ„āļ”āđ‰ āļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰āļˆāļķāļ‡āļ—āļģāļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ–āļķāļ‡āļĻāļąāļāļĒāļ āļēāļžāđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđ‚āļ”āļĒāļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢ (Food Waste, FW) āđāļĨāļ°āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢ (Cellulose-based Food Packaging Product, CFPP) āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļĢāļ°āļ”āļąāļšāļ›āļēāļ™āļāļĨāļēāļ‡ (35 Âą 2 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ) āđƒāļ™āļĢāļđāļ›āđāļšāļšāļāļ° (Batch Experiment) āđ€āļ›āđ‡āļ™āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļē 45 āļ§āļąāļ™ āđ‚āļ”āļĒāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ§āļąāļŠāļ”āļļāļ•āļąāđ‰āļ‡āļ•āđ‰āļ™āļ—āļąāđ‰āļ‡ 2 āļŠāļ™āļīāļ”āļ—āļĩāđˆāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļĄāļĩ 3 āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ (FW/CFPP 100:0, 40:60 āđāļĨāļ° 0:100 (āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĢāļ°āđ€āļŦāļĒāļ‡āđˆāļēāļĒ)) āđāļĨāļ°āļĄāļĩāļāļēāļĢāđƒāļŠāđ‰āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ§āļąāļŠāļ”āļļāļ•āļąāđ‰āļ‡āļ•āđ‰āļ™āđāļĨāļ°āļŦāļąāļ§Â­āđ€āļŠāļ·āđ‰āļ­āļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒāđ€āļ—āđˆāļēāļāļąāļš 0.5 āļĢāļ§āļĄāļ—āļąāđ‰āļ‡āļĄāļĩāļāļēāļĢāđ€āļ•āļīāļĄāđ‚āļ‹āđ€āļ”āļĩāļĒāļĄāđ„āļšāļ„āļēāļĢāđŒāļšāļ­āđ€āļ™āļ• (NaHCO3) āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļĒāđˆāļ­āļĒāļŠāļĨāļēāļĒāļ āļēāļĒāđƒāļ•āđ‰āļŠāļ āļēāļ§āļ°āđ„āļĢāđ‰āļ­āļēāļāļēāļĻāļ­āļĒāļđāđˆāđƒāļ™āļŠāļ āļēāļ§āļ°āļŠāļĄāļ”āļļāļĨ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āđ„āļ”āđ‰āļĄāļĩāļāļēāļĢāļ™āļģāđ‚āļĄāđ€āļ”āļĨāļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒ āļˆāļģāļ™āļ§āļ™ 4 āđ‚āļĄāđ€āļ”āļĨ (Modified Gompertz Model, First-order Model, Monod Model āđāļĨāļ° Cone Model) āļĄāļēāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ™āļēāļĒāļœāļĨāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āļˆāļēāļāļ§āļąāļŠāļ”āļļāļ•āļąāđ‰āļ‡āļ•āđ‰āļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ•āđˆāļēāļ‡ āđ† āļ”āđ‰āļ§āļĒ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļē āļžāļšāļ§āđˆāļē āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ FW/CFPP 100:0 āđƒāļŦāđ‰āļœāļĨāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļŠāļ°āļŠāļĄāļŠāļđāļ‡āļ—āļĩāđˆāļŠāļļāļ” āļĢāļ­āļ‡āļĨāļ‡āļĄāļēāļ„āļ·āļ­ 40:60 āđāļĨāļ° 0:100 āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļœāļĨāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™ āđ€āļ—āđˆāļēāļāļąāļš 459.15, 381.79 āđāļĨāļ° 355.60 āļĄāļīāļĨāļĨāļīāļĨāļīāļ•āļĢāļĄāļēāļ•āļĢāļāļēāļ™āļ•āđˆāļ­āļāļĢāļąāļĄāļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĢāļ°āđ€āļŦāļĒāļ‡āđˆāļēāļĒ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđāļĨāļ°āļˆāļēāļāđ‚āļĄāđ€āļ”āļĨāļ—āļēāļ‡āļ„āļ“āļīāļ•āļĻāļēāļŠāļ•āļĢāđŒāļ—āļĩāđˆāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļ—āļąāđ‰āļ‡āļŦāļĄāļ” āļžāļšāļ§āđˆāļē Modified Gompertz Model āđ€āļ›āđ‡āļ™āđ‚āļĄāđ€āļ”āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģāđāļĨāļ°āđ€āļŦāļĄāļēāļ°āļŠāļĄāļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™āļāļēāļĢāđƒāļŠāđ‰āļ—āļģāļ™āļēāļĒāļœāļĨāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļ‚āļ­āļ‡āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ FW/CFPP 100:0 āđāļĨāļ° 0:100 āđāļ•āđˆāļŠāļģāļŦāļĢāļąāļšāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™ FW/CFPP 40:60 āļžāļšāļ§āđˆāļē First-order Model āđ€āļ›āđ‡āļ™āđ‚āļĄāđ€āļ”āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļĄāđˆāļ™āļĒāļģāđāļĨāļ°āđ€āļŦāļĄāļēāļ°āļŠāļĄāļĄāļēāļāļāļ§āđˆāļē Modified Gompertz Model āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ—āļēāļ‡āļˆāļĨāļ™āļžāļĨāļĻāļēāļŠāļ•āļĢāđŒ āđ„āļ”āđ‰āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļē āļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢāđāļĨāļ°āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢ (FW/CFPP 40:60) āļĄāļĩāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđƒāļ™āļ­āļąāļ•āļĢāļēāļ—āļĩāđˆāđ€āļĢāđ‡āļ§āļāļ§āđˆāļēāļāļēāļĢāļŦāļĄāļąāļāđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢāļŦāļĢāļ·āļ­āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢāđ€āļžāļĩāļĒāļ‡āļ­āļĒāđˆāļēāļ‡āđ€āļ”āļĩāļĒāļ§Anaerobic co-digestion is proven to be a promising technology for enhancing the production of methane. In this study, the biochemical methane potential (BMP) from anaerobic co-digestion of food waste (FW) and cellulose-based food packaging product (CFPP) was carried out under mesophilic (35 Âą 2°C) condition in a batch mode for 45 days. Three mixing ratios of these two substrates (FW/CFPP 100:0, 40:60, and 0:100 based on volatile solids (VS)) were studied with a substrate-to-inoculum ratio of 0.5. Sodium bicarbonate (NaHCO3) was also added to establish a stable anaerobic digestion process. In addition, four mathematical models (Modified Gompertz model, First-order model, Monod model, and Cone model) were employed to evaluate their suitability for predicting the methane production of the examined substrates. Based on the obtained results, it is found that the maximum cumulative methane yield was observed in FW/CFPP 100:0, followed by 40:60 and 0:100 with the values of 459.15, 381.79, and 355.60 NmL/gVS, respectively. Among all the studied kinetic models, it can be seen that the Modified Gompertz model was the most accurate and appropriate in predicting the methane production of FW/CFPP 100:0 and 0:100. However, in the case of FW/CFPP 40:60, the First-order model was found to be a better fit than the Modified Gompertz model. Besides, their kinetic parameters reveal that the co-digestion of FW/CFPP 40:60 had a faster methane production rate than the mono-digestion of FW or CFPP.Keywords: āļĻāļąāļāļĒāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™; āđ€āļĻāļĐāļ­āļēāļŦāļēāļĢ; āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđ€āļĒāļ·āđˆāļ­āļŠāļĩāļ§āļ āļēāļžāļšāļĢāļĢāļˆāļļāļ­āļēāļŦāļēāļĢ; āļāļēāļĢāļŦāļĄāļąāļāļĢāđˆāļ§āļĄ; āļˆāļĨāļ™āļžāļĨāļĻāļēāļŠāļ•āļĢāđŒ; Biochemical methane potential; Food waste; Cellulose-based food packaging product; Co-digestion; Kinetic
    corecore