441 research outputs found

    Quantum criticality in interacting bosonic Kitaev-Hubbard models

    Full text link
    Motivated by recent work on the non-Hermitian skin effect in the bosonic Kitaev-Majorana model, we study the quantum criticality of interacting bosonic Kitaev-Hubbard models on a chain and a two-leg ladder. In the hard-core limit, we show exactly that the non-Hermitian skin effect disappears via a transformation from hard-core bosonic models to spin-1/2 models. We also show that hard-core bosons can engineer the Kitaev interaction, the Dzyaloshinskii-Moriya interaction and the compass interaction in the presence of the complex hopping and pairing terms. Importantly, quantum criticalities of the chain with a three-body constraint and unconstrained soft-core bosons are investigated by the density matrix renormalization group method. This work reveals the effect of many-body interactions on the non-Hermitian skin effect and highlights the power of bosons with pairing terms as a probe for the engineering of interesting models and quantum phase transitions.Comment: 9 pages, 6 figure

    The influence of nitrogen doping of the acceptor in orange–red thermally activated delayed fluorescence emitters and OLEDs

    Get PDF
    Funding: C. Si thanks the China Scholarship Council (201806890001). D.S acknowledges support from the Royal Academy of Engineering Enterprise Fellowship (EF2122-13106). The St Andrews team thanks EPSRC for financial support (EP/P010482/1). X.-H. Zhang acknowledges support from the National Natural Science Foundation of China (Grant Nos. 52130304, 51821002), Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project.Nitrogen-containing polycyclic aromatic hydrocarbons (N-PAH) have been widely used as deep lowest unoccupied molecular orbital (LUMO) acceptors in donor-acceptor (D-A) red thermally activated delayed fluorescent (TADF) emitters and their use in organic light-emitting diodes. However, most of the studies have focused disparately on donor/acceptor combinations to yield efficient emitters, while it is rare that there is a methodological study to investigate the influence of the nitrogen (N) doping ratios on the ground and excited states of PAH acceptors. Here, we report a family of four different N-PAH acceptors containing different numbers of nitrogen atoms within the N-PAH and their use in D-A TADF emitters, DMACBP, DMACPyBP, DMACBPN and DMACPyBPN, when coupled to the same donor, 9,9-dimethyl-9,10-dihydroacridine (DMAC). As the nitrogen content in the acceptor increases the LUMO becomes progressively more stabilized while the singlet-triplet energy gap (ΔEST) decreases and the rate constant for reverse intersystem crossing (kRISC) increases. In particular, introducing nitrogen at the 10-position of the dibenzo[a,c]phenazine (BP) leads to a more than ten-fold enhancement in kRISC in DMACPyBP and DMACPyBPN compared to DMACBP and DMACBPN. Among the OLEDs with all four emitters that with DMACBPN demonstrates the highest EQEmax of 19.4% at an emission peak of 588 nm. while the deepest red emitting device employed DMACPyBPN (λEL = 640 nm) with an EQEmax of 5.4%.Publisher PDFPeer reviewe

    Sodium glucose cotransporter-2-inhibitor dapagliflozin improves nonalcoholic fatty liver disease by ameliorating dipeptidyl-peptidase-4 protein expression in diabetic mice

    Get PDF
    Introduction: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. It can progress from simple steatosis to nonalcoholic steatohepatitis and may even develop into liver fibrosis, hepatocirrhosis, or hepatocellular carcinoma, but there is no effective treatment. Material and methods: Wild-type (wt) and diabetic (db/db) mouse NAFLD-induced models were used to investigate the hepatoprotective effects and potential mechanisms of dapagliflozin (a new oral hypoglycaemic drug) on type 2 diabetes mellitus (T2DM) complicated with NAFLD, and to establish wt and db/db mouse NAFLD-induced and dapagliflozin treatment models. Results: Dapagliflozin reduces blood glucose, glycosylated haemoglobin, blood lipids, and serum transaminase levels in db/db mice and improves T2DM-related liver injury accompanied by NAFLD; the mechanism may be related to the decrease in dipeptidyl-peptidase-4 (DPP4) protein expression and improvement in liver enzymes. Further mechanism-related studies by our team revealed that dapagliflozin can also downregulate the expression of DPP4 proteins in the liver and reduce serum soluble DPP4 enzyme levels, thereby improving the hepatic steatosis and insulin resistance of NAFLD. Conclusion: Dapagliflozin may be an effective drug for the treatment of T2DM-induced NAFLD and NAFLD, providing a reliable laboratory basis and new treatment methods for the clinical treatment of NAFLD

    Molecular cloning and tissue expression of the fatty acid-binding protein (Es-FABP) gene in female Chinese mitten crab (Eriocheir sinensis)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fatty acid-binding proteins (FABPs), small cytosolic proteins that function in the uptake and utilization of fatty acids, have been extensively studied in higher vertebrates while invertebrates have received little attention despite similar nutritional requirements during periods of reproductive activity.</p> <p>Results</p> <p>Therefore, a cDNA encoding <it>Eriocheir sinensis </it>FABP (Es-FABP) was cloned based upon EST analysis of a hepatopancreas cDNA library. The full length cDNA was 750 bp and encoded a 131 aa polypeptide that was highly homologous to related genes reported in shrimp. The 9108 bp <it>Es-FABP </it>gene contained four exons that were interrupted by three introns, a genomic organization common among FABP multigene family members in vertebrates. Gene expression analysis, as determined by RT-PCR, revealed the presence of <it>Es-FABP </it>transcripts in hepatopancreas, hemocytes, ovary, gills, muscle, thoracic ganglia, heart, and intestine, but not stomach or eyestalk. Real-time quantitative RT-PCR analysis revealed that <it>Es-FABP </it>expression in ovary, hemocytes, and hepatopancreas was dependent on the status of ovarian development, with peak expression observed in January.</p> <p>Conclusions</p> <p>Evidence provided in the present report supports a role of Es-FABP in lipid transport during the period of rapid ovarian growth in <it>E. sinensis</it>, and indirectly confirms the participation of the hepatopancreas, ovary, and hemocytes in lipid nutrient absorption and utilization processes.</p

    Efficient orange organic light-emitting diodes employing a central aniline bridged multiresonant thermally activated delayed fluorescence emitter

    Get PDF
    Funding: S. W. and J. X. W. thank the China Scholarship Council (201906250199, 202006250026) for support. Dianming Sun acknowledges support from the Royal Academy of Engineering Enterprise Fellowship (EF2122-13106). E. Z.-C. thanks the Engineering and Physical Sciences Research Council (EP/W015137/1, EP/W007517/1). X.-H. Z. acknowledges support by the National Natural Science Foundation of China (Grant No. 52130304, 51821002) and the Collaborative Innovation Center of Suzhou Nano Science & Technology.Multiresonant thermally activated delayed fluorescence (MR-TADF) compounds are attractive for use in organic light-emitting diodes as they show narrowband emission, are bright, and can harvest both singlet and triplet excitons for the emission of light. Reflected in the paucity of examples of orange-to-red emitters, developing MR-TADF emitters that emit beyond the green remains an outstanding materials design challenge. In this work, we report one of the first carbonyl-based orange MR-TADF emitters, DDiKTa-A , which is based on the dimerization of the sky-blue emitting DiKTa through a central aniline bridge. DDiKTa-A emits at λPL of 562 nm and has high photoluminescence quantum yield of 92% in 2 wt% doped films in mCP. DDiKTa-A exhibits temperature dependent steady-state photoluminescence in 2-MeTHF, acting as an indirect indicator of the polarity of the medium. The OLEDs with DDiKTa-A showed an EQEmax of 20.3%, but with significant efficiency roll-off (EQE100 of 13.2%). The EQEmax was improved, and the efficiency roll-off mitigated by incorporating an assistant dopant, 4CzIPN, within the emissive layer of the device. The hyperfluorescence device showed an EQEmax of 24.3%, which decreased to 22.5 and 14.6% at 100 and 1000 cd m−2, respectively.Peer reviewe

    Catalyst size dependent growth of Pd-catalyzed one-dimensional InAs nanostructures

    Get PDF
    In this study, Pd was used as catalyst to grow one-dimensional InAs nanostructures on GaAs (111)(B) substrates in order to explore the growth mechanism and the effect of non-gold catalysts in growing epitaxial III-V nanostructures. With detailed morphological, structural, and chemical characterizations using electron microscopy, coupled with analysis of the Pd-In binary phase diagram, it was found that size of Pd nanoparticles plays a key role in determining the growth mechanism of one-dimensional InAs nanostructures. (C) 2013 AIP Publishing LLC

    Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Jatropha curcas </it>is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid) which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission.</p> <p>Results</p> <p>The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative <it>delta </it><it>12 </it><it>fatty acid desaturase </it>genes in <it>Jatropha </it>(<it>JcFAD2s</it>) through genome-wide analysis and downregulated the expression of one of these genes, <it>JcFAD2-1</it>, in a seed-specific manner by RNA interference technology. The resulting <it>JcFAD2-1 </it>RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78%) and a corresponding reduction in polyunsaturated fatty acids (< 3%) in its seed oil. The control <it>Jatropha </it>had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in <it>Jatropha</it>. Due to the changes in the fatty acids profile, the oil of the <it>JcFAD2-1 </it>RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60) in Europe. The presence of high seed oleic acid did not have a negative impact on other <it>Jatropha </it>agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic <it>Jatropha </it>that will help reduce public concerns for environmental issues surrounding genetically modified plants.</p> <p>Conclusion</p> <p>In this study we produced seed-specific <it>JcFAD2-1 </it>RNA interference transgenic <it>Jatropha </it>without a selectable marker. We successfully increased the proportion of oleic acid versus linoleic in <it>Jatropha </it>through genetic engineering, enhancing the quality of its oil.</p
    corecore