1,071 research outputs found

    Joint Optimization of Computation and Communication Power in Multi-User Massive MIMO Systems

    Get PDF
    With the growing interest in the deployment of massive multiple-input-multiple-output (MIMO) systems and millimeter wave technology for fifth generation (5G) wireless systems, the computation power to the total power consumption ratio is expected to increase rapidly due to high data traffic processing at the baseband unit. Therefore in this paper, a joint optimization problem of computation and communication power is formulated for multi-user massive MIMO systems with partially-connected structures of radio frequency (RF) transmission systems. When the computation power is considered for massiv MIMO systems, the results of this paper reveal that the energy efficiency of massive MIMO systems decreases with increasing the number of antennas and RF chains, which is contrary with the conventional energy efficiency analysis results of massive MIMO systems, i.e., only communication power is considered. To optimize the energy efficiency of multi-user massive MIMO systems, an upper bound on energy efficiency is derived. Considering the constraints on partially-connected structures, a suboptimal solution consisting of baseband and RF precoding matrices is proposed to approach the upper bound on energy efficiency of multi-user massive MIMO systems. Furthermore, an oPtimized Hybrid precOding with computation and commuNication powEr (PHONE) algorithm is developed to realize the joint optimization of computation and communication power. Simulation results indicate that the proposed algorithm improves energy and cost efficiencies and the maximum power saving is achieved by 76.59\% for multi-user massive MIMO systems with partially-connected structures

    Towards a Deep Understanding of Multilingual End-to-End Speech Translation

    Full text link
    In this paper, we employ Singular Value Canonical Correlation Analysis (SVCCA) to analyze representations learnt in a multilingual end-to-end speech translation model trained over 22 languages. SVCCA enables us to estimate representational similarity across languages and layers, enhancing our understanding of the functionality of multilingual speech translation and its potential connection to multilingual neural machine translation. The multilingual speech translation model is trained on the CoVoST 2 dataset in all possible directions, and we utilize LASER to extract parallel bitext data for SVCCA analysis. We derive three major findings from our analysis: (I) Linguistic similarity loses its efficacy in multilingual speech translation when the training data for a specific language is limited. (II) Enhanced encoder representations and well-aligned audio-text data significantly improve translation quality, surpassing the bilingual counterparts when the training data is not compromised. (III) The encoder representations of multilingual speech translation demonstrate superior performance in predicting phonetic features in linguistic typology prediction. With these findings, we propose that releasing the constraint of limited data for low-resource languages and subsequently combining them with linguistically related high-resource languages could offer a more effective approach for multilingual end-to-end speech translation.Comment: Accepted to Findings of EMNLP 202

    Energy Efficient Indirect Evaporative Air Cooling

    Get PDF
    An energy-saving and environmentally friendly air-conditioning method has been proposed. The key component is a novel indirect evaporative heat exchanger (IEHX) based on the M-cycle. In this design, the compact IEHX is able to produce sub-wet-bulb cooling and reduce the air temperature approaching dew-point temperature. This chapter aims to achieve a fundamental understanding of the novel IEHX. A numerical model has been developed and validated by comparing the simulated outlet air conditions against experimental data. The model showed a good agreement with the experimental findings. Employing the validated numerical model, we have theoretically investigated the heat and mass transfer behavior occurred in the IEHX. The detailed cooling process has been analyzed on the psychrometric chart. In addition, the effects of varying inlet conditions and airflow passage dimensions on the cooling efficiency have been studied. By analyzing the thermal performance of the IEHX, we have provided possible suggestions to improve the performance of the dew-point cooler and enable it to attain higher cooling effectiveness

    Spectral Efficiency and Scalability Analysis for Multi-Level Cooperative Cell-Free Massive MIMO Systems

    Full text link
    This paper proposes a multi-level cooperative architecture to balance the spectral efficiency and scalability of cell-free massive multiple-input multiple-output (MIMO) systems. In the proposed architecture, spatial expansion units (SEUs) are introduced to avoid a large amount of computation at the access points (APs) and increase the degree of cooperation among APs. We first derive the closed-form expressions of the uplink user achievable rates under multi-level cooperative architecture with maximal ratio combination (MRC) and zero-forcing (ZF) receivers. The accuracy of the closed-form expressions is verified. Moreover, numerical results have demonstrated that the proposed multi-level cooperative architecture achieves a better trade-off between spectral efficiency and scalability than other forms of cell-free massive MIMO architectures.Comment: 5 pages, 3 figure

    Ray Tracing Based 60 GHz Channel Clustering and Analysis in Staircase Environment

    Get PDF

    Energy-spectral efficiency tradeoff of visible light communication systems

    Get PDF

    Chemical differences among collapsing low-mass protostellar cores

    Full text link
    Organic features lead to two distinct types of Class 0/I low-mass protostars: hot corino sources, and warm carbon-chain chemistry (WCCC) sources. Some observations suggest that the chemical variations between WCCC sources and hot corino sources are associated with local environments, as well as the luminosity of protostars. We conducted gas-grain chemical simulation in collapsing protostellar cores, and found that the fiducial model predicts abundant carbon-chain molecules and COMs, and reproduces WCCC and hot corino chemistry in the hybrid source L483. By changing values of some physical parameters, including the visual extinction of ambient clouds (AVambA_{\rm V}^{\rm amb}), the cosmic-ray ionization rate (ζ\zeta), the maximum temperature during the warm-up phase (TmaxT_{\rm max}), and the contraction timescale of protostars (tcontt_{\rm cont}), we found that UV photons and cosmic rays can boost WCCC features by accelerating the dissociation of CO and CH4_4 molecules. On the other hand, UV photons can weaken the hot corino chemistry by photodissociation reactions, while the dependence of hot corino chemistry on cosmic rays is relatively complex. The TmaxT_{\rm max} does not affect WCCC features, while it can influence hot corino chemistry by changing the effective duration of two-body surface reactions for most COMs. The long tcontt_{\rm cont} can boost WCCC and hot corino chemistry, by prolonging the effective duration of WCCC reactions in the gas phase and surface formation reactions for COMs, respectively. Subsequently, we ran a model with different physical parameters to reproduce scarce COMs in prototypical WCCC sources. The scarcity of COMs in prototypical WCCC sources can be explained by insufficient dust temperature in the inner envelopes to activate hot corino chemistry. Meanwhile, the High ζ\zeta and the long tcontt_{\rm cont} favors the explanation for scarce COMs in these sources.Comment: Accepted for publication in A&A, 18 pages, 10 figure

    Assessment of heterotrophic growth supported by soluble microbial products in anammox biofilm using multidimensional modeling

    Get PDF
    Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria-substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm
    • …
    corecore