69 research outputs found

    Evaluation of passenger comfort with road field test multi-axis vibration

    Get PDF
    Using objective vibration evaluation to produce results highly consistent with real road ride comfort is challenging. The deficiencies in traditional evaluation indices, adopting an average operator, maximum operator, or cumulative operator as the main vibration information integration logic, are reported here through 19 designed road field tests in which major vibration information distribution covers all axes and vibration information is distributed in spacetime in various patterns. A new evaluation index which adopted a combination of maximum and cumulative operator is proposed to overcome these deficiencies and an interactive mechanism which standardized the process of selecting vibration information distributed among axes and spacetime is devised between the localized major vibrations. The results show that the proposed road ride comfort evaluation index is more consistent and accurate than the evaluation indices proposed by ISO 2631-1 and can be used more generally

    Clostridium butyricum alleviates LPS-induced acute immune stress in goats by regulating bacterial communities and blood metabolites

    Get PDF
    The mitigation and prevention of acute immune stress are essential for livestock production. Clostridium butyricum (C. butyricum) has shown positive effects in stabilizing intestinal microbiota disorders, improving immune function and inhibiting disease development, but its effects on ruminants are unclear. Therefore, the current trial hypothesized that C. butyricum could improve goats’ immune function and antioxidant capacity by regulating bacterial communities and blood metabolism and effectively alleviating the acute immune stress induced by Lipopolysaccharides (LPS). Sixteen healthy goats were fed C. butyricum for 70 days, and the goats were challenged with LPS on day 71. Blood and feces were collected at 0 h and 6 h after the challenge to evaluate the effects of C. butyricum on their intestinal microbiota, immune function, antioxidant function, and plasma metabolites. The results showed that C. butyricum had no significant effect on plasma biochemical parameters at the beginning of the LPS challenge. However, supplementation with C. butyricum increased plasma levels of IgA, IgG, T-SOD, and T-AOC (P < 0.05), but TNF-α, IL-6, and MDA were decreased (P < 0.05). In contrast, IL-10 showed an increasing trend (P < 0.10). Rectal microbiota analysis showed that C. butyricum significantly increased the relative abundance of Epsilonbacteraeota at the phylum level of goats; at the genus level, the relative abundances of Campylobacter and Anaerorhabdus]_furcosa_group were also significantly increased (P < 0.05). Christensenellaceae_R-7_group as the dominant microbiota also showed a significant increase in their abundance values, while Clostridium and Lachnospiraceae_UCG-001 were significantly lower (P < 0.05). When the LPS challenge continued up to 6 h, dietary supplementation with C. butyricum still resulted in significantly higher plasma concentrations of IgA, IL-10, and T-SOD in goats than in the control group, reducing TNF-α levels (P < 0.05). In addition, plasma levels of T-CHOL and LDL were significantly reduced, and the expression of d-proline was significantly upregulated according to metabolomic analysis (P < 0.05). In conclusion, dietary supplementation with C. butyricum helped optimize the expression of bacterial communities and plasma metabolites to enhance the ability of goats to alleviate acute immune stress

    Crystal Structure of a Novel Esterase Rv0045c from Mycobacterium tuberculosis

    Get PDF
    There are at least 250 enzymes in Mycobacterium tuberculosis (M. tuberculosis) involved in lipid metabolism. Some of the enzymes are required for bacterial survival and full virulence. The esterase Rv0045c shares little amino acid sequence similarity with other members of the esterase/lipase family. Here, we report the 3D structure of Rv0045c. Our studies demonstrated that Rv0045c is a novel member of α/β hydrolase fold family. The structure of esterase Rv0045c contains two distinct domains: the α/β fold domain and the cap domain. The active site of esterase Rv0045c is highly conserved and comprised of two residues: Ser154 and His309. We proposed that Rv0045c probably employs two kinds of enzymatic mechanisms when hydrolyzing C-O ester bonds within substrates. The structure provides insight into the hydrolysis mechanism of the C-O ester bond, and will be helpful in understanding the ester/lipid metabolism in M. tuberculosis

    SCF/C-Kit/JNK/AP-1 Signaling Pathway Promotes Claudin-3 Expression in Colonic Epithelium and Colorectal Carcinoma

    No full text
    Claudin-3 is a major protein of tight junctions (TJs) in the intestinal epithelium and is critical for maintaining cell-cell adhesion, barrier function, and epithelium polarity. Recent studies have shown high claudin-3 levels in several solid tumors, but the regulation mechanism of claudin-3 expression remains poorly understood. In the present study, colorectal cancer (CRC) tissues, HT-29 and DLD-1 CRC cell lines, CRC murine model (C57BL/6 mice) and c-kit loss-of-function mutant mice were used. We demonstrated that elevated claudin-3 levels were positively correlated with highly expressed c-kit in CRC tissues based upon analysis of protein expression. In vitro, claudin-3 expression was clearly increased in CRC cells by overexpressed c-kit or stimulated by exogenous recombinant human stem cell factor (rhSCF), while significantly decreased by the treatment with c-kit or c-Jun N-terminal kinase (JNK) inhibitors. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay showed that SCF/c-kit signaling significantly promoted activator protein-1 (AP-1) binding with CLDN-3 promoter and enhanced its transcription activity. Furthermore, decreased expression of claudin-3 was obtained in the colonic epithelium from the c-Kit loss-of-function mutant mice. In conclusion, SCF/c-kit-JNK/AP-1 signaling pathway significantly promoted claudin-3 expression in colonic epithelium and CRC, which could contribute to epithelial barrier function maintenance and to CRC development

    Intense endoplasmic reticulum stress (ERS) / IRE1α enhanced Oxaliplatin efficacy by decreased ABCC10 in colorectal cancer cells

    No full text
    Abstract Background Attenuated Oxaliplatin efficacy is a challenge in treating colorectal cancer (CRC) patients, contributory to the failure in chemotherapy and the risks in relapse and metastasis. However, the mechanism of Oxaliplatin de-efficacy during CRC treatment has not been completely elucidated. Methods Microarray screening, western blot and qPCR on clinic CRC samples were conducted to select the target gene ABCC10 transporter. The Cancer Genome Atlas data was analyzed to figure out the correlation between the clinical manifestation and ABCC10 expression. ABCC10 knock-down in CRC cells was conducted to identify its role in the Oxaliplatin resistance. Cell counting kit-8 assay was conducted to identify the CRC cell viability and Oxaliplatin IC50. Flow cytometry was conducted to detect the cell apoptosis exposed to Oxaliplatin. The intracellular Oxaliplatin accumulation was measured by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Results CRC patients with higher ABCC10 were prone to relapse and metastasis. Differential ABCC10 expression in multiple CRC cell lines revealed a strong positive correlation between ABCC10 expression level and decreased Oxaliplatin response. In ABCC10 knock-down CRC cells the Oxaliplatin sensitivity was evidently elevated due to an increase of intracellular Oxaliplatin accumulation resulted from the diminished drug efflux. To explore a strategy to block ABCC10 in CRC cells, we paid a special interest in the endoplasmic reticulum stress (ERS) / unfolded protein response (UPR) that plays a dual role in tumor development. We found that neither the inhibition of ERS nor the induction of mild ERS had anti-CRC effect. However, the CRC cell viability was profoundly decreased and the pro-apoptotic factor CHOP and apoptosis were increased by the induction of intense ERS. Significantly, the Oxaliplatin sensitivity of CRC cells was enhanced in response to the intense ERS, which was blocked by inhibiting IRE1α branch of UPR. Finally, we figured out that the intense ERS down-regulated ABCC10 expression via regulated IRE1-dependent decay activity. Conclusion Oxaliplatin was a substrate of ABCC10 efflux transporter. The intense ERS/IRE1α enhanced Oxaliplatin efficacy through down-regulating ABCC10 in addition to inducing CHOP. We suggested that introduction of intense ERS/UPR could be a promising strategy to restore chemo-sensitivity when used in combination with Oxaliplatin or other chemotherapeutic drugs pumped out by ABCC10

    SCF/c-KIT Signaling Increased Mucin2 Production by Maintaining Atoh1 Expression in Mucinous Colorectal Adenocarcinoma

    No full text
    Mucinous colorectal adenocarcinoma (MCA) patients often a show high risk of malignant potential and a poorer survival rate. Given that the pathological feature and oncobiological characteristics of MCA are correlated with its abundant extracellular mucin2 (MUC2), we paid interest toward investigating the key factor that promotes MUC2 production exposure to highly-activated stem cell factor (SCF)/c-KIT signaling, which we believed to contribute to MCA formation. Long-term azoxymethane and dextran sodium sulfate treatment successfully induced MCA only in wild-type (WT) mice at week 37 and 43, while all c-kit loss-of-function mutant mice (Wadsm/m) developed non-MCA. Significantly, MUC2 and its key transcriptional factor Atonal homologue 1 (Atoh1) were remarkably expressed in MCA mice compared with non-MCA mice. Atoh1 was significantly elevated in colorectal cancer (CRC) cells stimulated by exogenous SCF or overexpressing c-KIT in vitro, while decreased by the blockage of SCF/c-KIT signaling with Imatinib. Furthermore, the maintained Atoh1 protein level was due to the inactive glycogen synthase kinase 3β (p-GSK3β) by virtue of the activated SCF/c-KIT-Protein Kinase B (AKT) signaling. Similar results were obtained from the ONCOMINE database and CRC patients. In conclusion, we suggested that SCF/c-KIT signaling promoted MUC2 production and MCA tumorigenesis by maintaining Atoh1 expression. Therefore, targeting the related key molecules might be beneficial for treating MCA patients

    Lipopolysaccharide induces the early enhancement of mice colonic mucosal paracellular permeability mainly mediated by mast cells

    No full text
    The alteration of intestinal mucosal barrier is considered to be the central pathophysiological process in response to gastrointestinal infections, and mucosal microstructural damage is a major factor for enhancing epithelial permeability in persistent bacterial infections. However, the mechanism involved in hyperpermeability in the early stage of acute bacterial infections is not fully understood. In the present study, fluorescein isothiocyanate-dextran across and transepithelial resistance measured in Ussing chambers were used to assess the intestinal paracellular permeability. Mast cell activation was evaluated by western blotting for the presence of tryptase released from mast cells. Serum levels of interleukin-6 were evaluated using enzymelinked immunosorbent assay. Our results indicated that mast cells played a pivotal role in colonic mucosal hyperpermeability in wild type mice treated with lipopolysaccharide (LPS) for 2 h. And the effect of LPS was mainly dependent on mast cell degranulation, while no change in permeability was observed in the mast celldeficient mice (Wads-/- ) after LPS administration. No obvious changes of the mucosal structure including histomorphological architecture and expression of intercellular junction proteins were obtained in either wild type or Wads-/- mice after LPS stimulation by hematoxylin and eosin staining, immunofluorescence staining and western blot analysis. Furthermore, the selfrenewal of intestinal epithelia, detected by using proliferation marker 5’-bromo-2’-deoxyuridine, was not involved in increased permeability. Collectively, activation of mast cells induced by LPS mediated intestinal hyperpermeability in the initial stage, and played a crucial role in barrier dysfunction rather than mucosal microstructural damage in acute enterogenous bacterial infection

    Radio Spectral Monitoring Campaign at Proposed SKA Sites in China

    No full text

    Traumatic brain injury dysregulates microRNAs to modulate cell signaling in rat hippocampus.

    No full text
    Traumatic brain injury (TBI) is a common cause for cognitive and communication problems, but the molecular and cellular mechanisms are not well understood. Epigenetic modifications, such as microRNA (miRNA) dysregulation, may underlie altered gene expression in the brain, especially hippocampus that plays a major role in spatial learning and memory and is vulnerable to TBI. To advance our understanding of miRNA in pathophysiological processes of TBI, we carried out a time-course microarray analysis of microRNA expression profile in rat ipsilateral hippocampus and examined histological changes, apoptosis and synapse ultrastructure of hippocampus post moderate TBI. We found that 10 out of 156 reliably detected miRNAs were significantly and consistently altered from one hour to seven days after injury. Bioinformatic and gene ontology analyses revealed 107 putative target genes, as well as several biological processes that might be initiated by those dysregulated miRNAs. Among those differentially expressed microRNAs, miR-144, miR-153 and miR-340-5p were confirmed to be elevated at all five time points after TBI by quantitative RT-PCR. Western blots showed three of the predicated target proteins, calcium/calmodulin-dependent serine protein kinase (CASK), nuclear factor erythroid 2-related factor 2 (NRF2) and alpha-synuclein (SNCA), were concurrently down- regulated, suggesting that miR-144, miR-153 and miR-340-5p may play important roles collaboratively in the pathogenesis of TBI-induced cognitive and memory impairments. These microRNAs might serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain
    • …
    corecore