124 research outputs found

    Establishment of Fungal Decomposition Model Based on OLS and Logistic Model

    Get PDF
    By using the OLS model, an equation for the rate of decomposing wood by a variety of fungi was established. We analyzed the effects of various fungi in the experimental data under different temperature and humidity. Based on the growth performance of different fungi at different temperatures and humidity, we use the method of systematic cluster to divide the fungi into 5 categories, and introduce competition levels as the viability of different species of fungi. We have established a logistic model that introduces competition levels to obtain a fungal habitat model. The fungal habitat model includes predictions about the relative advantages and disadvantages for each species and combinations of species likely to persist, and do so for different environments including arid, semi-arid, temperate, arboreal, and tropical rain forests

    Effect of Heating Method on Hydrogen Production by Biomass Gasification in Supercritical Water

    Get PDF
    The glucose as a test sample of biomass is gasified in supercritical water with different heating methods driven by renewable solar energy. The performance comparisons of hydrogen production of glucose gasification are investigated. The relations between temperature raising speed of reactant fluid, variation of volume fraction, combustion enthalpy, and chemical exergy of H 2 of the product gases with reactant solution concentration are presented, respectively. The results show that the energy quality of product gases with preheating process is higher than that with no preheating unit for hydrogen production. Hydrogen production quantity and gasification rate of glucose decrease obviously with the increase of concentration of material in no preheating system

    Effect of Heating Method on Hydrogen Production by Biomass Gasification in Supercritical Water

    Get PDF
    The glucose as a test sample of biomass is gasified in supercritical water with different heating methods driven by renewable solar energy. The performance comparisons of hydrogen production of glucose gasification are investigated. The relations between temperature raising speed of reactant fluid, variation of volume fraction, combustion enthalpy, and chemical exergy of H2 of the product gases with reactant solution concentration are presented, respectively. The results show that the energy quality of product gases with preheating process is higher than that with no preheating unit for hydrogen production. Hydrogen production quantity and gasification rate of glucose decrease obviously with the increase of concentration of material in no preheating system

    Enhanced mechanical properties in β-Ti alloy aged from recrystallized ultrafine β grains

    Get PDF
    Ultrafine β grain structures with recrystallized morphologies were fabricated by severe plastic deformation and subsequent annealing in Ti-10Mo-8 V-1Fe-3.5Al alloy. The minimum mean β grain size of 480 nm was obtained for the first time as a recrystallized structure in Ti alloys. Precipitation behavior of α in subsequent aging significantly changed with decreasing the recrystallized β grain size. Both tensile strength and total ductility of the aged Ti-alloy were increased by the β grain refinement. Tensile strength of 1.6 GPa and total elongation of 9.1% were achieved in the aged specimen having the prior β grain size of 480 nm, which was attributed to its finer and more homogeneous precipitated microstructure having a mixture of nanoscale thin-plate α and globular α without side α plates along β grain boundaries

    Plasma Lnc-UCA1/miR-138 axis as a potential biomarker for gestational diabetes mellitus and neonatal prognosis

    Get PDF
    Objectives: This study aimed to explore the correlations of Lnc-UCA1/miR-138 axis with gestational diabetes mellitus (GDM) risk and neonatal prognosis. Material and methods: First, the blood samples from sixty GDM patients and 60 healthy pregnant women were collected to detect the change of Lnc-UCA1/miR-138 axis by using real-time polymerase chain reaction (RT-qPCR). The clinical characteristics of GDM patients, healthy controls, and neonates were recorded. Then, the correlation analysis of Lnc-UCA1, miR-138, and Lnc-UCA1/miR-138 axis levels with clinicopathological characteristics was performed to explore the clinical value of Lnc-UCA1/miR-138 axis in GDM. Finally, the specificity and sensitivity of Lnc-UCA1, miR-138, and Lnc-UCA1/miR-138 axis for GDM diagnosis was evaluated using receiver operating characteristic (ROC) curves. Results: Our present study found that, when compared with healthy pregnancies, the expression levels of Lnc-UCA1 and miR-138 were increased and decreased, respectively, and Lnc-UCA1/miR-138 axis profile was elevated. Second, Lnc-UCA1 and Lnc-UCA1/miR-138 axis were positively correlated with fasting glucose, one-hour glucose, and two-hour glucose, while miR-138 showed the opposite trend. Furthermore, the area under the ROC curve (AUC) were 0.8196, 0.8021, and 0.8901 for diagnostic efficiencies of Lnc-UCA1, miR-138, and Lnc-UCA1/miR-138, respectively. In addition, higher profiles of Lnc-UCA1 were correlated with birth asphyxia of neonate. Conclusions: Circulating Lnc-UCA1/miR-138 axis might be involved in the pathogenesis of GDM and could function as a novel and effective biomarker for GDM risk and neonatal prognosis

    Achieving large super-elasticity through changing relative easiness of deformation modes in Ti-Nb-Mo alloy by ultra-grain refinement

    Get PDF
    Large super-elasticity approaching its theoretically expected value was achieved in Ti-13.3Nb-4.6Mo alloy having an ultrafine-grained β-phase. In-situ synchrotron radiation X-ray diffraction analysis revealed that the dominant yielding mechanism changed from dislocation slip to martensitic transformation by decreasing the β-grain size down to sub-micrometer. Different grain size dependence of the critical stress to initiate dislocation slip and martensitic transformation, which was reflected by the transition of yielding behavior, was considered to be the main reason for the large super-elasticity in the ultrafine-grained specimen. The present study clarified that ultra-grain refinement down to sub-mirometer scale made dislocation slips more difficult than martensitic transformation, leading to an excellent super-elasticity close to the theoretical limit in the β-Ti alloy

    Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/β-catenin signaling

    Get PDF
    Rationale: Antimicrobial peptides, such as cathelicidin LL-37/hCAP-18, are important effectors of the innate immune system with direct antibacterial activity. In addition, LL-37 is involved in the regulation of tumor cell growth. However, the molecular mechanisms underlying the functions of LL-37 in promoting lung cancer are not fully understood. Methods: The expression of LL-37 in the tissues and sera of patients with non-small cell lung cancer was determined through immunohistological, immunofluorescence analysis, and enzyme-linked immunosorbent assay. The animal model of wild-type and Cramp knockout mice was employed to evaluate the tumorigenic effect of LL-37 in non-small cell lung cancer. The mechanism of LL-37 involving in the promotion of lung tumor growth was evaluated via microarray analyses, recombinant protein treatment approaches in vitro, tumor immunohistochemical assays, and intervention studies in vivo. Results: LL-37 produced by myeloid cells was frequently upregulated in primary human lung cancer tissues. Moreover, its expression level correlated with poor clinical outcome. LL-37 activated Wnt/β-catenin signaling by inducing the phosphorylation of protein kinase B and subsequent phosphorylation of glycogen synthase kinase 3β mediated by the toll-like receptor-4 expressed in lung tumor cells. LL-37 treatment of tumor cells also decreased the levels of Axin2. In contrast, it elevated those of an RNA-binding protein (tristetraprolin), which may be involved in the mechanism through which LL-37 induces activation of Wnt/β-catenin. Conclusion: LL-37 may be a critical molecular link between tumor-supportive immune cells and tumors, facilitating the progression of lung cancer

    Physicochemical property-driven optimization of diarylaniline compounds as potent HIV-1 non-nucleoside reverse transcriptase inhibitors

    Get PDF
    Using physicochemical property-driven optimization, twelve new diarylaniline compounds (DAANs) (7a–h, 11a–b and 12a–b) were designed and synthesized. Among them, compounds 12a–b not only showed high potency (EC50 0.96–4.92 nM) against both wild-type and drug-resistant viral strains with the lowest fold change (FC 0.91 and 5.13), but also displayed acceptable drug-like properties based on aqueous solubility and lipophilicity (LE > 0.3, LLE > 5, LELP < 10). The correlations between potency and physicochemical properties of these DAAN analogues are also described. Compounds 12a–b merit further development as potent clinical trial candidates against AIDS

    Optimization of 2,4-diarylanilines as non-nucleoside HIV-1 reverse transcriptase inhibitors

    Get PDF
    The current optimization of 2,4-diarylaniline analogs (DAANs) on the central phenyl ring provided a series of new active DAAN derivatives 9a–9e, indicating an accessible modification approach that could improve anti-HIV potency against wild-type and resistant strains, aqueous solubility, and metabolic stability. A new compound 9e not only exhibited extremely high potency against wild-type virus (EC50 0.53 nM) and several resistant viral strains (EC50 0.36 – 3.9 nM), but also showed desirable aqueous solubility and metabolic stability, which were comparable or better than those of the anti-HIV-1 drug TMC278 (2). Thus, new compound 9e might be a potential drug candidate for further development of novel next-generation NNRTIs
    corecore