2,218 research outputs found

    Transcription errors induce proteotoxic stress and shorten cellular lifespan

    Get PDF

    Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons

    Get PDF
    Mitochondrial dysfunction is the underlying cause of many neurological disorders, including peripheral neuropathies. Mitochondria rely on a proton gradient to generate ATP and interfering with electron transport chain function can lead to the deleterious accumulation of reactive oxygen species (ROS). Notably, loss of mitochondrial potential precedes cellular demise in several programmed cell destruction pathways, including axons undergoing Wallerian degeneration. Here, we demonstrate that mitochondrial depolarization triggers axon degeneration and cell death in primary mouse sensory neurons. These degenerative events are not blocked by inhibitors of canonical programmed cell death pathways such as apoptosis, necroptosis, and parthanatos. Instead, the axodestructive factor Sarm1 is required for this axon degeneration and cell death. In the absence of Sarm1, the mitochondrial poison CCCP still induces depolarization of mitochondria, ATP depletion, calcium influx, and the accumulation of ROS, yet cell death and axon degeneration are blocked. The survival of these neurons despite the accumulation of ROS indicates that Sarm1 acts downstream of ROS generation. Indeed, loss of Sarm1 protects sensory neurons and their axons from prolonged exposure to ROS. Therefore, Sarm1 functions downstream of ROS to induce neuronal cell death and axon degeneration during oxidative stress. These findings highlight the central role for Sarm1 in a novel form of programmed cell destruction that we term sarmoptosis

    Gene therapy targeting SARM1 blocks pathological axon degeneration in mice

    Get PDF
    Axonal degeneration (AxD) following nerve injury, chemotherapy, and in several neurological disorders is an active process driven by SARM1, an injury-activated NADase. Axons of SARM1-null mice exhibit greatly delayed AxD after transection and in models of neurological disease, suggesting that inhibiting SARM1 is a promising strategy to reduce pathological AxD. Unfortunately, no drugs exist to target SARM1. We, therefore, developed SARM1 dominant-negatives that potently block AxD in cellular models of axotomy and neuropathy. To assess efficacy in vivo, we used adeno-associated virus-mediated expression of the most potent SARM1 dominant-negative and nerve transection as a model of severe AxD. While axons of vehicle-treated mice degenerate rapidly, axons of mice expressing SARM1 dominant-negative can remain intact for \u3e10 d after transection, similar to the protection observed in SARM1-null mice. We thus developed a novel in vivo gene therapeutic to block pathological axon degeneration by inhibiting SARM1, an approach that may be applied clinically to treat manifold neurodegenerative diseases characterized by axon loss

    Use of yeast as a system to study amyloid toxicity

    Get PDF
    The formation of amyloid-like fibrils is a hallmark of several neurodegenerative diseases. How the assembly of amyloid-like fibrils contributes to cell death is a major unresolved question in the field. The budding yeast Saccharomyces cerevisiae is a powerful model organism to study basic mechanisms for how cellular pathways regulate amyloid assembly and proteotoxicity. For example, studies of the amyloidogenic yeast prion [RNQ+] have revealed novel roles by which molecular chaperones protect cells from the accumulation of cytotoxic protein species. In budding yeast there are a variety of cellular assays that can be employed to analyze the assembly of amyloid-like aggregates and mechanistically dissect how cellular pathways influence proteotoxicity. In this review, we describe several assays that are routinely used to investigate aggregation and toxicity of the [RNQ+] prion in yeast

    A guide to laboratory use of the squid Loligo pealei

    Get PDF
    From the Preface: Unfortunately, a guide like this one does not happen simply. It is the product of polite requests (at first polite, anyway) from colleagues, of mutual nagging, and of wives with persistant memories. What we are attempting to achieve with this contribution is a consolidation of many years of personal experience with squid into a source of practical information hopefully useful to the increasing number of people working with the squid. One does not undertake the task of preparing such a guide for a limited audience with unreserved enthusiasm. It always seems the same amount of work could produce something for a larger audience and therefore, hopefully, of greater significance. On the other hand when the hours and days spent on developing handling procedures, techniques, and "tricks of the squid trade" are considered it seems untenable not to pass this otherwise unpublishable data on in hope of saving others like pain and time. Therefore, what we have attempted to do is informally put together information that should prove useful to people interested in all aspects of squid biology. In this way we hope to make the laboratory utilization of the squid more efficient not only from the standpoint of the investigator and the collector but also for the future of the species Loligo pealei

    Sarm1-mediated axon degeneration requires both SAM and TIR interactions

    Get PDF
    Axon degeneration is an evolutionarily conserved pathway that eliminates damaged or unneeded axons. Manipulation of this poorly understood pathway may allow treatment of a wide range of neurological disorders. In an RNAi-based screen performed in cultured mouse DRG neurons, we observed strong suppression of injury-induced axon degeneration upon knockdown of Sarm1 [SARM (sterile α-motif-containing and armadillo-motif containing protein)]. We find that a SARM-dependent degeneration program is engaged by disparate neuronal insults: SARM ablation blocks axon degeneration induced by axotomy or vincristine treatment, while SARM acts in parallel with a soma-derived caspase-dependent pathway following trophic withdrawal. SARM is a multidomain protein that associates with neuronal mitochondria. Deletion of the N-terminal mitochondrial localization sequence disrupts SARM mitochondrial localization in neurons but does not alter its ability to promote axon degeneration. In contrast, mutation of either the SAM (sterile α motif) or TIR (Toll-interleukin-1 receptor) domains abolishes the ability of SARM to promote axonal degeneration, while a SARM mutant containing only these domains elicits axon degeneration and nonapoptotic neuronal death even in the absence of injury. Protein–protein interaction studies demonstrate that the SAM domains are necessary and sufficient to mediate SARM–SARM binding. SARM mutants lacking a TIR domain bind full-length SARM and exhibit strong dominant-negative activity. These results indicate that SARM plays an integral role in the dismantling of injured axons and support a model in which SAM-mediated multimerization is necessary for TIR-dependent engagement of a downstream destruction pathway. These findings suggest that inhibitors of SAM and TIR interactions represent therapeutic candidates for blocking pathological axon loss and neuronal cell death

    Reciprocal Efficiency of RNQ1 and Polyglutamine Detoxification in the Cytosol and Nucleus

    Get PDF
    Onset of proteotoxicity is linked to change in the subcellular location of proteins that cause misfolding diseases. Yet, factors that drive changes in disease protein localization and the impact of residence in new surroundings on proteotoxicity are not entirely clear. To address these issues, we examined aspects of proteotoxicity caused by Rnq1-green fluorescent protein (GFP) and a huntingtin's protein exon-1 fragment with an expanded polyglutamine tract (Htt-103Q), which is dependent upon the intracellular presence of [RNQ+] prions. Increasing heat-shock protein 40 chaperone activity before Rnq1-GFP expression, shifted Rnq1-GFP aggregation from the cytosol to the nucleus. Assembly of Rnq1-GFP into benign amyloid-like aggregates was more efficient in the nucleus than cytosol and nuclear accumulation of Rnq1-GFP correlated with reduced toxicity. [RNQ+] prions were found to form stable complexes with Htt-103Q, and nuclear Rnq1-GFP aggregates were capable of sequestering Htt-103Q in the nucleus. On accumulation in the nucleus, conversion of Htt-103Q into SDS-resistant aggregates was dramatically reduced and Htt-103Q toxicity was exacerbated. Alterations in activity of molecular chaperones, the localization of intracellular interaction partners, or both can impact the cellular location of disease proteins. This, in turn, impacts proteotoxicity because the assembly of proteins to a benign state occurs with different efficiencies in the cytosol and nucleus

    Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones

    Get PDF
    Heat shock protein 40 (Hsp40) co-chaperones assist in cellular protein folding and degradation through the binding and delivery of non-native proteins to heat shock protein 70 (Hsp70). The mechanism for substrate transfer from Hsp40s to Hsp70 is unknown. Two recent studies provide new details that shed light on novel mechanisms for substrate recognition by Hsp40s and a common mechanism for polypeptide transfer to Hsp70

    Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation for Oromotor Feeding Problems in Newborns: An Open-Label Pilot Study

    Full text link
    Neonates born premature or who suffer brain injury at birth often have oral feeding dysfunction and do not meet oral intake requirements needed for discharge. Low oral intake volumes result in extended stays in the hospital (\u3e2 months) and can lead to surgical implant and explant of a gastrostomy tube (G-tube). Prior work suggests pairing vagus nerve stimulation (VNS) with motor activity accelerates functional improvements after stroke, and transcutaneous auricular VNS (taVNS) has emerged as promising noninvasive form of VNS. Pairing taVNS with bottle-feeding rehabilitation may improve oromotor coordination and lead to improved oral intake volumes, ultimately avoiding the need for G-tube placement. We investigated whether taVNS paired with oromotor rehabilitation is tolerable and safe and facilitates motor learning in infants who have failed oral feeding. We enrolled 14 infants [11 premature and 3 hypoxic–ischemic encephalopathy (HIE)] who were slated for G-tube placement in a prospective, open-label study of taVNS-paired rehabilitation to increase feeding volumes. Once-daily taVNS was delivered to the left tragus during bottle feeding for 2 weeks, with optional extension. The primary outcome was attainment of oral feeding volumes and weight gain adequate for discharge without G-tube while also monitoring discomfort and heart rate (HR) as safety outcomes. We observed no adverse events related to stimulation, and stimulation-induced HR reductions were transient and safe and likely confirmed vagal engagement. Eight of 14 participants (57%) achieved adequate feeding volumes for discharge without G-tube (mean treatment length: 16 ± 6 days). We observed significant increases in feeding volume trajectories in responders compared with pre-stimulation (p \u3c 0.05). taVNS-paired feeding rehabilitation appears safe and may improve oral feeding in infants with oromotor dyscoordination, increasing the rate of discharge without G-tube, warranting larger controlled trials

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam
    • …
    corecore