2,326 research outputs found
R-Process Nucleosynthesis In Neutrino-Driven Winds From A Typical Neutron Star With M = 1.4 Msun
We study the effects of the outer boundary conditions in neutrino-driven
winds on the r-process nucleosynthesis. We perform numerical simulations of
hydrodynamics of neutrino-driven winds and nuclear reaction network
calculations of the r-process. As an outer boundary condition of hydrodynamic
calculations, we set a pressure upon the outermost layer of the wind, which is
approaching toward the shock wall. Varying the boundary pressure, we obtain
various asymptotic thermal temperature of expanding material in the
neutrino-driven winds for resulting nucleosynthesis. We find that the
asymptotic temperature slightly lower than those used in the previous studies
of the neutrino-driven winds can lead to a successful r-process abundance
pattern, which is in a reasonable agreement with the solar system r-process
abundance pattern even for the typical proto-neutron star mass Mns ~ 1.4 Msun.
A slightly lower asymptotic temperature reduces the charged particle reaction
rates and the resulting amount of seed elements and lead to a high
neutron-to-seed ratio for successful r-process. This is a new idea which is
different from the previous models of neutrino-driven winds from very massive
(Mns ~ 2.0 Msun) and compact (Rns ~ 10 km) neutron star to get a short
expansion time and a high entropy for a successful r-process abundance pattern.
Although such a large mass is sometimes criticized from observational facts on
a neutron star mass, we dissolve this criticism by reconsidering the boundary
condition of the wind. We also explore the relation between the boundary
condition and neutron star mass, which is related to the progenitor mass, for
successful r-process.Comment: 14 pages, 2 figure
Generalized molecular chaos hypothesis and H-theorem: Problem of constraints and amendment of nonextensive statistical mechanics
Quite unexpectedly, kinetic theory is found to specify the correct definition
of average value to be employed in nonextensive statistical mechanics. It is
shown that the normal average is consistent with the generalized
Stosszahlansatz (i.e., molecular chaos hypothesis) and the associated
H-theorem, whereas the q-average widely used in the relevant literature is not.
In the course of the analysis, the distributions with finite cut-off factors
are rigorously treated. Accordingly, the formulation of nonextensive
statistical mechanics is amended based on the normal average. In addition, the
Shore-Johnson theorem, which supports the use of the q-average, is carefully
reexamined, and it is found that one of the axioms may not be appropriate for
systems to be treated within the framework of nonextensive statistical
mechanics.Comment: 22 pages, no figures. Accepted for publication in Phys. Rev.
Hidden gauge structure and derivation of microcanonical ensemble theory of bosons from quantum principles
Microcanonical ensemble theory of bosons is derived from quantum mechanics by
making use of a hidden gauge structure. The relative phase interaction
associated with this gauge structure, described by the Pegg-Barnett formalism,
is shown to lead to perfect decoherence in the thermodynamics limit and the
principle of equal a priori probability, simultaneously.Comment: 10 page
Tables of Hyperonic Matter Equation of State for Core-Collapse Supernovae
We present sets of equation of state (EOS) of nuclear matter including
hyperons using an SU_f(3) extended relativistic mean field (RMF) model with a
wide coverage of density, temperature, and charge fraction for numerical
simulations of core collapse supernovae. Coupling constants of Sigma and Xi
hyperons with the sigma meson are determined to fit the hyperon potential
depths in nuclear matter, U_Sigma(rho_0) ~ +30 MeV and U_Xi(rho_0) ~ -15 MeV,
which are suggested from recent analyses of hyperon production reactions. At
low densities, the EOS of uniform matter is connected with the EOS by Shen et
al., in which formation of finite nuclei is included in the Thomas-Fermi
approximation. In the present EOS, the maximum mass of neutron stars decreases
from 2.17 M_sun (Ne mu) to 1.63 M_sun (NYe mu) when hyperons are included. In a
spherical, adiabatic collapse of a 15 star by the hydrodynamics
without neutrino transfer, hyperon effects are found to be small, since the
temperature and density do not reach the region of hyperon mixture, where the
hyperon fraction is above 1 % (T > 40 MeV or rho_B > 0.4 fm^{-3}).Comment: 23 pages, 6 figures (Fig.3 and related comments on pion potential are
corrected in v3.
Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods
Accurate neutrino transport has been built into spherically symmetric
simulations of stellar core collapse and postbounce evolution. The results of
such simulations agree that spherically symmetric models with standard
microphysical input fail to explode by the delayed, neutrino-driven mechanism.
Independent groups implemented fundamentally different numerical methods to
tackle the Boltzmann neutrino transport equation. Here we present a direct and
detailed comparison of such neutrino radiation-hydrodynamical simulations for
two codes, Agile-Boltztran of the Oak Ridge-Basel group and Vertex of the
Garching group. The former solves the Boltzmann equation directly by an
implicit, general relativistic discrete angle method on the adaptive grid of a
conservative implicit hydrodynamics code with second-order TVD advection. In
contrast, the latter couples a variable Eddington factor technique with an
explicit, moving-grid, conservative high-order Riemann solver with important
relativistic effects treated by an effective gravitational potential. The
presented study is meant to test both neutrino radiation-hydrodynamics
implementations and to provide a data basis for comparisons and verifications
of supernova codes to be developed in the future. Results are discussed for
simulations of the core collapse and post-bounce evolution of a 13 solar mass
star with Newtonian gravity and a 15 solar mass star with relativistic gravity.Comment: 23 pages, 13 figures, revised version, to appear in Ap
Tests of a proximity focusing RICH with aerogel as radiator
Using aerogel as radiator and multianode PMTs for photon detection, a
proximity focusing Cherenkov ring imaging detector has been constructed and
tested in the KEK 2 beam. The aim is to experimentally study the basic
parameters such as resolution of the single photon Cherenkov angle and number
of detected photons per ring. The resolution obtained is well approximated by
estimates of contributions from pixel size and emission point uncertainty. The
number of detected photons per Cherenkov ring is in good agreement with
estimates based on aerogel and detector characteristics. The values obtained
turn out to be rather low, mainly due to Rayleigh scattering and to the
relatively large dead space between the photocathodes. A light collection
system or a higher fraction of the photomultiplier active area, together with
better quality aerogels are expected to improve the situation. The reduction of
Cherenkov yield, for charged particle impact in the vicinity of the aerogel
tile side wall, has also been measured.Comment: 4 pages, 8 figure
- âŠ