11 research outputs found

    The Effects of Endurance Exercise in Hypoxia on Acid-Base Balance, Potassium Kinetics, and Exogenous Glucose Oxidation

    Get PDF
    PurposeTo investigate the carbohydrate metabolism, acid–base balance, and potassium kinetics in response to exercise in moderate hypoxia among endurance athletes.MethodsNine trained endurance athletes [maximal oxygen uptake (VO2max): 62.5 ± 1.2 mL/kg/min] completed two different trials on different days: either exercise in moderate hypoxia [fraction of inspired oxygen (FiO2) = 14.5%, HYPO] or exercise in normoxia (FiO2 = 20.9%, NOR). They performed a high-intensity interval-type endurance exercise consisting of 10 × 3 min runs at 90% of VO2max with 60 s of running (active rest) at 50% of VO2max between sets in hypoxia (HYPO) or normoxia (NOR). Venous blood samples were obtained before exercise and during the post-exercise. The subjects consumed 13C-labeled glucose immediately before exercise, and we collected expired gas samples during exercise to determine the 13C-excretion (calculated as 13CO2/12CO2).ResultsThe running velocities were significantly lower in HYPO (15.0 ± 0.2 km/h) than in NOR (16.4 ± 0.3 km/h, P < 0.0001). Despite the lower running velocity, we found a significantly greater exercise-induced blood lactate elevation in HYPO compared with in NOR (P = 0.002). The bicarbonate ion concentration (P = 0.002) and blood pH (P = 0.002) were significantly lower in HYPO than in NOR. There were no significant differences between the two trials regarding the exercise-induced blood potassium elevation (P = 0.87) or 13C-excretion (HYPO, 0.21 ± 0.02 mmol⋅39 min; NOR, 0.14 ± 0.03 mmol⋅39 min; P = 0.10).ConclusionEndurance exercise in moderate hypoxia elicited a decline in blood pH. However, it did not augment the exercise-induced blood K+ elevation or exogenous glucose oxidation (13C-excretion) compared with the equivalent exercise in normoxia among endurance athletes. The findings suggest that endurance exercise in moderate hypoxia causes greater metabolic stress and similar exercise-induced elevation of blood K+ and exogenous glucose oxidation compared with the same exercise in normoxia, despite lower mechanical stress (i.e., lower running velocity)

    Post-exercise serum hepcidin levels were unaffected by hypoxic exposure during prolonged exercise sessions.

    No full text
    The purpose of the present study was to determine the influence of hypoxic exposure during prolonged endurance exercise sessions (79 min in total) on post-exercise hepcidin levels in trained male endurance athletes. Ten endurance athletes (mean ± standard deviation; height: 169.8 ± 7.1 cm, weight: 57.1 ± 5.0 kg) conducted two endurance exercise sessions under either a normobaric hypoxic condition [inspired O2 fraction (FiO2) = 14.5%] or a normoxic condition (FiO2 = 20.9%). Exercise consisted of 10 × 3 min running on a treadmill at 95% of maximal oxygen uptake ([Formula: see text]) with 60s of active rest at 60% of [Formula: see text]. After 10 min of rest, they subsequently performed 30 min of continuous running at 85% of [Formula: see text]. Running velocities were significantly lower in the HYPO than in the NOR (P 0.05]. Serum hepcidin levels increased significantly 120 min after exercise (HYPO: from 10.7 ± 9.4 ng/mL to 15.8 ± 11.2 ng/mL; NOR: from 7.9 ± 4.7 ng/mL to 13.2 ± 7.9 ng/mL, P < 0.05), and no difference was observed between the trials. In conclusion, endurance exercise at lower running velocity in hypoxic conditions resulted in similar post-exercise hepcidin elevations as higher running velocity in normoxic conditions

    Elevated Serum Hepcidin Levels during an Intensified Training Period in Well-Trained Female Long-Distance Runners

    No full text
    Iron is essential for providing oxygen to working muscles during exercise, and iron deficiency leads to decreased exercise capacity during endurance events. However, the mechanism of iron deficiency among endurance athletes remains unclear. In this study, we compared iron status between two periods involving different training regimens. Sixteen female long-distance runners participated. Over a seven-month period, fasting blood samples were collected during their regular training period (LOW; middle of February) and during an intensified training period (INT; late of August) to determine blood hematological, iron, and inflammatory parameters. Three-day food diaries were also assessed. Body weight and lean body mass did not differ significantly between LOW and INT, while body fat and body fat percentage were significantly lower in INT (p &lt; 0.05). Blood hemoglobin, serum ferritin, total protein, and iron levels, total iron-binding capacity, and transferrin saturation did not differ significantly between the two periods. Serum hepcidin levels were significantly higher during INT than LOW (p &lt; 0.05). Carbohydrate and iron intakes from the daily diet were significantly higher during INT than LOW (p &lt; 0.05). In conclusion, an elevated hepcidin level was observed during an intensified training period in long-distance runners, despite an apparently adequate daily intake of iron

    The effects of endurance exercise in hypoxia on acid-base balance and potassium kinetics: a randomized crossover design in male endurance athletes

    No full text
    Abstract Background Exercise-induced disturbance of acid-base balance and accumulation of extracellular potassium (K+) are suggested to elicit fatigue. Exercise under hypoxic conditions may augment exercise-induced alterations of these two factors compared with exercise under normoxia. In the present study, we investigated acid-base balance and potassium kinetics in response to exercise under moderate hypoxic conditions in endurance athletes. Methods Nine trained middle-to-long distance athletes [maximal oxygen uptake (VO2max) 57.2 ± 1.0 mL/kg/min] completed two different trials on different days, consisting of exercise in moderate hypoxia [fraction of inspired oxygen (FiO2) = 14.5%, H trial] and exercise in normoxia (FiO2 = 20.9%, N trial). They performed interval endurance exercise (8 × 4 min pedaling at 80% of VO2max alternated with 2-min intervals of active rest at 40% of VO2max) under hypoxic or normoxic conditions. Venous blood samples were obtained to determine blood lactate, pH, bicarbonate ion, and K+ concentrations before exercise, during exercise, and after exercise. Results The blood lactate concentrations increased significantly with exercise in both trials. Exercise-induced blood lactate elevations were significantly greater in the N trial than in the H trial at all time points (P = 0.012). Bicarbonate ion concentrations (P = 0.001) and blood pH (P = 0.019) during exercise and post-exercise periods were significantly lower in the N trial than in the H trial. A significantly greater exercise-induced elevation in blood K+ concentration was produced in the N trial than in the H trial during exercise and immediately after exercise (P = 0.03). Conclusions High-intensity interval exercise on a cycle ergometer under moderate hypoxic conditions did not elicit a decrease in blood pH or elevation in K+ levels compared with an equivalent level of exercise under normoxic conditions

    The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment

    No full text
    To determine the effects of heat acclimation on gastrointestinal (GI) damage and the gastric emptying (GE) rate following endurance exercise in a hot environment. Fifteen healthy men were divided into two groups: endurance training in hot (HOT, 35 °C, n = 8) or cool (COOL, 18 °C, n = 7) environment. All subjects completed 10 days of endurance training (eight sessions of 60 min continuous exercise at 50% of the maximal oxygen uptake (V·O2max). Subjects completed a heat stress exercise tests (HST, 60 min exercise at 60% V·O2max) to evaluate the plasma intestinal fatty acid-binding protein (I-FABP) level and the GE rate following endurance exercise in a hot environment (35 °C) before (pre-HST) and after (post-HST) the training period. We assessed the GE rate using the 13C-sodium acetate breath test. The core temperature during post-HST exercise decreased significantly in the HOT group compared to the pre-HST (p = 0.004) but not in the COOL group. Both the HOT and COOL groups showed exercise-induced plasma I-FABP elevations in the pre-HST (p = 0.002). Both groups had significantly attenuated exercise-induced I-FABP elevation in the post-HST. However, the reduction of exercise-induced I-FABP elevation was not different significantly between both groups. GE rate following HST did not change between pre- and post-HST in both groups, with no significant difference between two groups in the post-HST. Ten days of endurance training in a hot environment improved thermoregulation, whereas exercise-induced GI damage and delay of GE rate were not further attenuated compared with training in a cool environment

    Elevated Serum Hepcidin Levels during an Intensified Training Period in Well-Trained Female Long-Distance Runners

    No full text
    Iron is essential for providing oxygen to working muscles during exercise, and iron deficiency leads to decreased exercise capacity during endurance events. However, the mechanism of iron deficiency among endurance athletes remains unclear. In this study, we compared iron status between two periods involving different training regimens. Sixteen female long-distance runners participated. Over a seven-month period, fasting blood samples were collected during their regular training period (LOW; middle of February) and during an intensified training period (INT; late of August) to determine blood hematological, iron, and inflammatory parameters. Three-day food diaries were also assessed. Body weight and lean body mass did not differ significantly between LOW and INT, while body fat and body fat percentage were significantly lower in INT (p &lt; 0.05). Blood hemoglobin, serum ferritin, total protein, and iron levels, total iron-binding capacity, and transferrin saturation did not differ significantly between the two periods. Serum hepcidin levels were significantly higher during INT than LOW (p &lt; 0.05). Carbohydrate and iron intakes from the daily diet were significantly higher during INT than LOW (p &lt; 0.05). In conclusion, an elevated hepcidin level was observed during an intensified training period in long-distance runners, despite an apparently adequate daily intake of iron
    corecore