2 research outputs found

    Coastal Physical Vulnerability of Surabaya and Its Surrounding Area to Sea Level Rise

    Full text link
    The study for coastal vulnerability to sea level rise was carried out in Surabaya and its surrounding area, it has focused on calculations of the physical vulnerability index were  used coastal vulnerability index (CVI) methods. It was standardized by the multi criteria analysis (MCA) approach according to the study area.  The score of each physical variable derived from remote sensing satellite data and the results of studies that have been done, such as modeling results and thematic maps, and then integrated into geographic information systems (GIS). Result of this study shows that the coastal areas of Gresik, Surabaya, and Sidoarjo in the very low to very high vulnerability level. Physically, the low land areas with open and slightly open coastal have a high vulnerability category. The high level vulnerability was found located in the northern of Madura Strait (Gresik Regency) that overlooks to the Java Sea is about 28.81% from the entire of study areas. Meanwhile, the moderate, low and very low levels of vulnerability were located on Surabaya and Sidoarjo Regency that have more protected coastal area, relatively. According to the physical condition, the coastal elevation is the most variable that contributes to the high of vulnerability index in the coastal of Surabaya City and Sidoarjo Regency.&nbsp

    Analysis of Agricultural Drought in East Java Using Vegetation Health Index

    Full text link
    Drought is a natural hazard indicated by the decreasing of rainfall and water storage and impacting agricultural sector. Agricultural drought assessment has been used to monitor agricultural sustainability, particularly in East Java as national agricultural production center. Identification of drought characteristics –correlated with El Niño-Southern Oscillation, and agricultural impact on paddy fields and rice production using VHI (Vegetation Health Index) were conducted. VHI is produced by TCI (Temperature Condition Index) and VCI (Vegetation Condition Index) derived from MODIS satellite data, LST (Land Surface Temperature) and EVI (Enhanced Vegetation Index), respectively. The results showed agricultural drought usually started in June, maximum in October and ended in November. Onset and end time drought tends to follow monsoonal rainfall pattern. El Niño 2015 showed long duration of agricultural drought (i.e. ± 5 months), high severity (i.e. mild-extreme drought; VHI 0-40) and areal extent of drought approx. 197,343 km2, while during La Niña 2010 the areal extent was approx. 28,685 km2 with mild-severe drought (VHI 10-40). Impact of agricultural drought on paddy fields showed wider (smaller) areal extent in sub-round 3 (sub-round 1) from September-December (January-April). Areal extent of drought was negatively correlated with rice production (r=-0.79) which significant in 99 % confidence level
    corecore