1,896 research outputs found

    Vocalization Influences Auditory Processing in Collicular Neurons of the CF-FM-Bat, Rhinolophus ferrumequinum

    Get PDF
    1. In awake Greater Horseshoe bats (Rhinolophus ferrumequinum) the responses of 64 inferior colliculus neurons to electrically elicited vocalizations (VOC) and combinations of these with simulated echoes (AS: pure tones and AS(FM): sinusoidally frequency-modulated tones mimicking echoes from wing beating insects) were recorded. 2. The neurons responding to the species-specific echolocation sound elicited by electrical stimulation of the central grey matter had best frequencies between 76 and 86 kHz. The response patterns to the invariable echolocation sound varied from unit to unit (Fig. 1). 3. In 26 neurons the responses to vocalized echolocation sounds markedly differed from those to identical artificial ones copying the CF-portion of the vocalized sound (AS). These neurons reacted with a different response to the same pure tone whether it was presented artificially or vocalized by the bat (Fig. 2). In these neurons vocalization activities qualitatively alter the responsiveness to the stimulus parameters of the echoes. 4. A few neurons neither responded to vocalization nor to an identical pure tone but discharged when vocalization and pure tone were presented simultaneously. 5. In 2 neurons synchronized encoding of small frequency-modulations of the pure tone (mimicking an echo returning from a wing beating prey) occurred only during vocalization. Without vocalization the neurons did not respond to the identical stimulus set (Fig. 3). In these neurons vocalization activities enhanced FM-encoding capabilities otherwise not present in these neurons. 6. FM-encoding depended on the timing between vocalization and frequency-modulated signal (echo). As soon as vocalization and FM-signal no more overlapped or at least 60–80 ms after onset of vocalization synchronized firing to the FM was lost (4 neurons) (Fig. 4). 7. 4 neurons weakly responded to playbacks of the bat's own vocalization 1 ms after onset of vocalization. But when the playback frequency was shifted to higher frequencies by more than 400 Hz the neurons changed firing patterns and the latency of the first response peak (Fig. 5). These neurons sensitive to frequency shifts in the echoes returning during vocalization may be relevant to the Doppler-shift compensation mechanism in Greater Horseshoe bats

    Neurophysiological analysis of echolocation in bats

    Get PDF
    An analysis of echolocation and signal processing in brown bats is presented. Data cover echo detection, echo ranging, echolocalization, and echo analysis. Efforts were also made to identify the part of the brain that carries out the most essential processing function for echolocation. Results indicate the inferior colliculus and the auditory nuclei function together to process this information

    Directional Sensitivity of Echolocation System in Bats Producing Frequency-Modulated Signals

    Get PDF
    1. Radiation patterns of the 55, 75 and 95 kHz components in frequency-modulated sounds emitted by the grey bat (Myotis grisescens) were studied. FM sounds similar to species-specific orientation sounds were elicited by electrical stimuli applied to the midbrain while the head of the animal was immobilized by a nail cemented to its skull. The main beam was emitted 5-10° downward from the eye-nostril line. The radiation angle at one half of maximum amplitude was 38° lateral, 18° up and 50° down at 55 kHz, 34° lateral, 8° up and 32° down at 75 kHz, and 30° lateral, 5° up and 25° down at 95 kHz. At 95 kHz, two prominent side lobes were present. 2. The directional sensitivity of the auditory system (DSA) measured in terms of the potential evoked in the lateral lemniscus was studied with the grey bat (M. grisescens) and the little brown bat (M. lucifugus). The maximally sensitive direction moved toward the median plane with the increase in frequency from 35-95 kHz. The slope of the DSA curve increased from 0.3-0.6 dB/degree with frequency. 3. The directional sensitivity of the echolocation system (DSE) was calculated using both the DSA curve and the radiation pattern of the emitted sound. The maximally sensitive direction of the echolocation system was 15° lateral to the median plane at 55kHz and 2.5° lateral at 95 kHz. The slope of the DSE curve increased from o.6 to 1.0 dB/degree with frequency. Thus, the higher the frequency of sound, the sharper was the directional sensitivity of the echolocation system. 4. The interaural pressure difference (IPD), which appeared to be the essential cue for echolocation in Myotis, changed linearly with the azimuth angle from 0-30° lateral regardless of the frequency of sound, at respective rates of 0.4, 0.7, 0.3 and 0.4 dB/degree for 35, 55, 75 and 95 kHz sounds. Beyond 30°, the change in IPD was quite different depending on frequency. For 75 and 95 kHz sounds, the IPD stayed nearly the same between 30° and 90°. Thus, the 75-95 kHz components in FM orientation sounds were not superior to the 35 and 55 kHz components in terms of the IPD cue for echolocation. 5. Assuming the just-detectable IPD and ITD to be 0.5 dB and 5µsec respectively, as in man, the just-detectable azimuth difference of Myotis around the median plane would be 0.7-1.7° with the IPD cue and 11° with the ITD cue

    Zero-temperature Phase Diagram of Two Dimensional Hubbard Model

    Full text link
    We investigate the two-dimensional Hubbard model on the triangular lattice with anisotropic hopping integrals at half filling. By means of a self-energy functional approach, we discuss how stable the non-magnetic state is against magnetically ordered states in the system. We present the zero-temperature phase diagram, where the normal metallic state competes with magnetically ordered states with (π,π)(\pi, \pi) and (2π/3,2π/3)(2\pi/3, 2\pi/3) structures. It is shown that a non-magnetic Mott insulating state is not realized as the ground state, in the present framework, but as a meta-stable state near the magnetically ordered phase with (2π/3,2π/3)(2\pi/3, 2\pi/3) structure.Comment: 4 pages, 4 figure

    Dynamical properties of S=1 bond-alternating Heisenberg chains in transverse magnetic fields

    Full text link
    We calculate dynamical structure factors of the S=1 bond-alternating Heisenberg chain with a single-ion anisotropy in transverse magnetic fields, using a continued fraction method based on the Lanczos algorithm. In the Haldane-gap phase and the dimer phase, dynamical structure factors show characteristic field dependence. Possible interpretations are discussed. The numerical results are in qualitative agreement with recent results for inelastic neutron-scattering experiments on the S=1 bond-alternating Heisenberg-chain compound Ni(C9D24N4)(NO2)ClO4\rm{Ni(C_{9}D_{24}N_{4})(NO_{2})ClO_{4}} and the S=1 Haldane-gap compound Ni(C5D14N2)2N3(PF6)\rm{Ni(C_{5}D_{14}N_{2})_{2}N_{3}(PF_{6})} in transverse magnetic fields.Comment: 7 pages, 6 figure

    Echo Delay and Overlap with Emitted Orientation Sounds and Doppler-shift Compensation in the Bat, Rhinolophus ferrumequinum

    Get PDF
    The compensation of Doppler-shifts by the bat, Rhinolophusferrumequinum, functions only when certain temporal relations between the echo and the emitted orientation sound are given. Three echo configurations were used: a) Original orientation sounds were electronically Doppler-shifted and played back either cut at the beginning (variable delay) or at the end (variable duration) of the echo. b) Artificial constant frequency echoes with variable delay or duration were clamped to the frequency of the emitted orientation sound at different Doppler-shifts. c) The echoes were only partially Doppler-shifted and the Doppler-shifted component began after variable delays or had variable durations. With increasing delay or decreasing duration of the Doppler-shifted echo the compensation amplitude for a sinusoidally modulated + 3 kHz Dopplershift (modulation rate 0.08 Hz) decreases for all stimulus configurations (Figs. 1, 2, 3). The range of the Doppler-shift compensation system is therefore limited by the delay due to acoustic travel time to about 4 m distance between bat and target. In this range the overlap duration of the echo with the emitted orientation sound is always sufficiently long, when compared with data on the orientation pulse length during target approach from Schnitzler (1968) (Fig. 5)

    Anomalous magnetic properties near Mott transition in Kagom\'e lattice Hubbard model

    Full text link
    We investigate the characteristics of the metallic phase near the Mott transition in the Kagom\'e lattice Hubbard model using the cellular dynamical mean field theory. By calculating the specific heat and spin correlation functions, we demonstrate that the quasiparticles show anomalous properties in the metallic phase close to the Mott transition. We find clear evidence for the multi-band heavy quasiparticles in the specific heat, which gives rise to unusual temperature dependence of the spin correlation functions.Comment: 2 pages, 3 figures, accepted for publication in J. Mag. Mag. Mater. (Proceedings of the ICM, Kyoto, Japan, August 2006

    First ring contraction-desulfurization of 1-(arylcarbonyl)pyrido[2,1-c]-1,4-thiazines to 1-(arylcarbonyl)indolizines and its application to 3-arylthieno[3,2-a]indolizine synthesis

    Get PDF
    The ring contraction-desulfurization route from transient 1-(arylcarbonyl)pyridol2,1-c]-1,4-thiazine intermediates, generated in situ from the treatment of the corresponding pyridinium salts with a base and then a dehydrogenation agent, to 1-(arylcarbonyl)indolizines was first observed. By using this route three 1-arylcarbonyl-6,8-dimethylindolizines having the protected 2-thiol group were prepared and their transformation to 2-acyl-3-arylthieno[3,2-a]indolizine derivatives were performed in good yields.ArticleHETEROCYCLES. 74: 521-532 (2007)journal articl

    Arrival directions of large air showers, low-mu showers and old-age low-mu air showers observed at St. Chacaltaya

    Get PDF
    Arrival directions of air showers with primary energies in the range 10 to the 16.5 power eV to 10 to the 18th power eV show the first harmonic in right ascension (RA) with amplitude of 2.7 + or - 1.0% and phase of 13-16h. However, the second harmonic in RA slightly seen for showers in the range 10 to the 18th power eV to 10 to the 19th power eV disappeared by accumulation of observed showers. The distribution of arrival directions of low-mu air showers with primary energies around 10 to the 15th power eV observed at Chacaltaya from 1962 to 1967 is referred to, relating to the above-mentioned first harmonic. Also presented in this paper are arrival directions of old-age low-mu air showers observed at Chacaltaya from 1962 to 1967, for recent interest in gamma-ray air showers

    Energetic delayed hadrons in large air showers observed at 5200m above sea level

    Get PDF
    Energetic delayed hadrons in air showers with electron sizes in the range 10 to the 6th power to 10 to the 9th power were studied by observing the delayed bursts produced in the shield of nine square meter scintillation detectors in the Chacaltaya air-shower array. The frequency of such delayed burst is presented as a function of electron size, core distance and sec theta
    corecore