79 research outputs found

    Measurement of night sky brightness in southern Australia

    Full text link
    Night sky brightness is a major source of noise both for Cherenkov telescopes as well as for wide-angle Cherenkov detectors. Therefore, it is important to know the level of night sky brightness at potential sites for future experiments. The measurements of night sky brightness presented here were carried out at Fowler's Gap, a research station in New South Wales, Australia, which is a potential site for the proposed TenTen Cherenkov telescope system and the planned wide-angle Cherenkov detector system HiSCORE. A portable instrument was developed and measurements of the night sky brightness were taken in February and August 2010. Brightness levels were measured for a range of different sky regions and in various spectral bands. The night sky brightness in the relevant wavelength regime for photomultipliers was found to be at the same level as measured in similar campaigns at the established Cherenkov telescope sites of Khomas, Namibia, and at La Palma. The brightness of dark regions in the sky is about 2 x 10^12 photons/(s sr m^2) between 300 nm and 650 nm, and up to four times brighter in bright regions of the sky towards the galactic plane. The brightness in V band is 21.6 magnitudes per arcsec^2 in the dark regions. All brightness levels are averaged over the field of view of the instrument of about 1.3 x 10^(-3) sr. The spectrum of the night sky brightness was found to be dominated by longer wavelengths, which allows to apply filters to separate the night sky brightness from the blue Cherenkov light. The possible gain in the signal to noise ratio was found to be up to 1.2, assuming an ideal low-pass filter.Comment: 9 pages, 9 figures. Accepted for publication in Advances in Space Research as Proc to COSPAR 201

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Event-by-event reconstruction of the shower maximum XmaxX_{\mathrm{max}} with the Surface Detector of the Pierre Auger Observatory using deep learning

    Get PDF

    Reconstruction of Events Recorded with the Water-Cherenkov and Scintillator Surface Detectors of the Pierre Auger Observatory

    Get PDF

    Status and performance of the underground muon detector of the Pierre Auger Observatory

    Get PDF

    The XY Scanner - A Versatile Method of the Absolute End-to-End Calibration of Fluorescence Detectors

    Get PDF

    Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks

    Get PDF
    We present a method based on the use of Recurrent Neural Networks to extract the muon component from the time traces registered with water-Cherenkov detector (WCD) stations of the Surface Detector of the Pierre Auger Observatory. The design of the WCDs does not allow to separate the contribution of muons to the time traces obtained from the WCDs from those of photons, electrons and positrons for all events. Separating the muon and electromagnetic components is crucial for the determination of the nature of the primary cosmic rays and properties of the hadronic interactions at ultra-high energies. We trained a neural network to extract the muon and the electromagnetic components from the WCD traces using a large set of simulated air showers, with around 450 000 simulated events. For training and evaluating the performance of the neural network, simulated events with energies between 1018.5, eV and 1020 eV and zenith angles below 60 degrees were used. We also study the performance of this method on experimental data of the Pierre Auger Observatory and show that our predicted muon lateral distributions agree with the parameterizations obtained by the AGASA collaboration

    Outreach activities at the Pierre Auger Observatory

    Get PDF

    The ultra-high-energy cosmic-ray sky above 32 EeV viewed from the Pierre Auger Observatory

    Get PDF
    • …
    corecore