6 research outputs found

    Hepatic Involvement in Hemophagocytic Lymphohistiocytosis

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome which results in uncontrolled systemic proliferation of benign macrophages in all reticuloendothelial organs producing worsening peripheral blood cytopenia(s); hypercytokinemia leading to hepatic injury producing hyperferritinemia, hypertriglyceridemia, hypofibrinogenemia; and if not diagnosed and treated early may lead to disseminated intravascular coagulation (DIC), multiorgan dysfunction, and death in nearly all individuals. It is postulated that hepatic injury/dysfunction starts early in the course of the disease which may mimic nonspecific hepatitis like prodrome to fulminant hepatic failure; possibly requiring liver transplant. While HLH as an entity is being increasingly recognized nowadays across wide specialties (both pediatric and adults); hepatic involvement in this setting has been poorly characterized. This chapter is aimed to highlight on the diagnosis and classification of HLH with a special emphasis on the pathophysiology of hepatic dysfunction, histomorphology of liver; and the current concept and controversies on the role of liver transplantation in this clinical setting

    Necrotizing sialometaplasia: Manifestation of a localized unclassified vasculitis

    No full text
    Necrotizing sialometaplasia is a rare benign and self-limiting disease, which commonly affects the minor salivary glands. Typically, it involves the seromucinous glands located at palate, buccal mucosa, tongue, tonsil, nasal cavity, trachea, larynx, maxillary sinus, and retromolar trigone. We report two such cases of necrotizing sialometaplasia to create awareness among the pathologists and surgeons because of its close morphological and clinical resemblance to squamous cell carcinoma. We have also documented that, the ischemic necrosis of salivary gland is the result of a vasculitic process

    Plasma Processing of Iron Ore

    Get PDF
    The depletion of high-grade ore minerals and the scarcity of fossil fuel reserves are challenging factors for metallurgical industries in the future. Also, extensive mining for increased steel demand results in the generation of fines often found unsuitable for use as direct feedstock for the production of metals and alloys. Apart from mines waste, the other major sources of fine minerals are leftover in charge burdens, sludges, and dust generated in the high-temperature process. Sludge and fines generated during beneficiation of ore add to this woe, as the outcomes of beneficiation plants for lean ores show better yield for fine particles. The utilization of lean ore and wastes in iron making requires wide research and adopting new advanced technologies for quality production with time-saving operations. The application of thermal plasma in mineral processing has several advantages that can overcome the current industrial metal extraction barriers. The present study demonstrates the thermal plasma for the processing of different iron-bearing minerals and its feasibility for metal extraction

    Autoimmune pancreatitis with pancytopenia: A rare occurrence

    No full text
    Autoimmune pancreatitis (AIP) is considered a distinct type of pancreatitis with an autoimmune pathogenesis. Patients with AIP often develop extrapancreatic lesions such as biliary lesions, sialadenitis, retroperitoneal fibrosis, swelling of lymph nodes, chronic thyroiditis, and interstitial nephritis, suggesting that AIP may be a systemic disease. Moreover, several cases of immune thrombocytopenia and few with neutropenia complicated with AIP have been described. The pathogenesis of thrombocytopenia associated with AIP is still unclear; however, autoimmune processes are suggested. On the other hand, cases of pancytopenia complicated by AIP have not yet been reported. We herein report a very rare case of pancytopenia associated with AIP

    Effect of Foliar Feeding with Nutrients and Bioregulators on Yield and Quality Attributes of Litchi cv. Bombai

    No full text
    Litchi (Litchi chinensis Sonn.) is considered one of the most important sub-tropical fruits of the world. In the western part of Odisha, India, litchi growers are facing problems of unstable and lower marketable yield and inferior quality due to a higher incidence of fruit cracking, fruit drop, low sugar content, and higher fruit acidity. Keeping in mind the positive effects of nutrients and bioregulators, the current study was conducted to elucidate their impact on fruit yield and quality in the farmers’ field of Jamankira block in Sambalpur district of Odisha, which is under the care of Odisha University of Agriculture and Technology, India. For this study, eight-year-old litchi trees were selected. With 12 treatments, the experiment was set up in a Randomized Block Design replicated thrice, as follows: T1: spray treatment with Borax—0.5%; T2: spray treatment with Borax—0.3%; T3: spray treatment with ZnSO4—0.75%; T4: spray treatment with ZnSO4—0.5%; T5: spray treatment with CaCl2—0.5%; T6: spray treatment with CaCl2—0.1%; T7: spray treatment with humic acid—1.5%; T8: spray treatment with humic acid—1%; T9: spray treatment with seaweed extract—0.5%; T10: spray treatment with seaweed extract—0.1%; T11: foliar spray with NAA—20 ppm; and T12: control (Water Spray). The current study compared foliar feeding treatments comprising different nutrient and bioregulators, which were applied during the first week of December, just after the completed formation of new leaves and the untreated control. The highest total number of fruits per plant was recorded in plants sprayed with 0.5% ZnSO4 (T4) followed by those treated with 1% humic acid (T8). The highest total fruit yield was recorded in plants subjected to foliar feeding with 0.3% Borax (T2) which was found to be statistically similar to plants treated with 0.1% seaweed extract (T10) and 0.5% seaweed extract (T9). Among the treatments, a better response, i.e., a higher number of marketable fruits and marketable yield, was recorded in litchi plants treated with 0.3% Borax (T2) followed by 0.5% zinc sulphate (T4), 1% humic acid (T8), and 0.1% CaCl2 (T6). The application of 1% humic acid (T8) followed by 1.5% humic acid (T9) enhanced fruit setting (%) and fruit retention rates (%) and reduced the fruit drop rate (%). The enhanced fruit size (fruit length and fruit width) and higher fruit weight was obtained in litchi plants treated with 0.3% Borax. The foliar application of 0.3% Borax (T2) also resulted in a higher TSS, total sugars, reducing sugar content, lower acidity, the highest aril weight, and lower seed weight in litchi cv. Bombai. In this research, among the five principal components, only PC1 demonstrated approximately 45.14% variability within the influential axes. PC1 contributed the highest proportion (48.9%) to the overall variability, followed by PC2 with 29.1%, PC3 with 11.9%, PC4 with 0.59%, and PC5 with 0.20%. Consequently, the outcomes of the principal component analysis indicate the presence of extensive variability among treatments
    corecore