2 research outputs found

    The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation

    Get PDF
    Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation thus preventing fire fighters from approaching and extinguishing the fire. One of the strategies used in the LNG industry and recommended by federal regulation National Fire Protection Association (NFPA) 59A is to use expansion foam to suppress LNG vapors and to control LNG fire by reducing the fire size. In its application, expansion foam effectiveness heavily depends on application rate, generator location, and LNG containment pit design. Complicated phenomena involved and previous studies have not completely filled the gaps increases the needs for LNG field experiments involving expansion foam. In addition, alternative LNG vapor dispersion and pool fire suppression methodology, Foamglas® pool fire suppression (PFS), is investigated as well. This dissertation details the research and experiment development. Results regarding important phenomena are presented and discussed. Foamglas® PFS effectiveness is described. Recommendations for advancing current guidelines in LNG vapor dispersion and pool fire suppression methods are developed. The gaps are presented as the future work and recommendation on how to do the experiment better in the future. This will benefit LNG industries to enhance its safety system and to make LNG facilities safer

    The integration of Dow's Fire and Explosion Index into process design and optimization to achieve an inherently safer design

    Get PDF
    The integration of the safety parameter into process design and optimization is essential. However, there is no previous work in integrating the fire and explosion index (F&EI) into design and optimization. This research proposed a procedure for integrating safety into the design and optimization framework by using the safety parameter as optimization constraint. The method used in this research is DowâÂÂs Fire and Explosion Index which is usually calculated manually. This research automates the calculation of F&EI. The ability to calculate the F&EI, to determine loss control credit factors and business interruption, and to perform process unit risk analysis are unique features of this F&EI program. In addition to F&EI calculation, the F&EI program provides descriptions of each item of the penalties, chemicals/materials databases, the flexibility to submit known chemical/material data to databases, and material factor calculations. Moreover, the sensitivity analyses are automated by generating charts and expressions of F&EI as a function of material inventory and pressure. The expression will be the focal point in the process of integrating F&EI into process design and optimization framework. The proposed procedure of integrating F&EI into process design and optimization framework is verified by applying it into reactor-distillation column system. The final result is the optimum economic and inherently safer design for the reactor and distillation column system
    corecore