90 research outputs found

    A Hybrid Intelligent Early Warning System for Predicting Economic Crises: The Case of China

    Get PDF
    This paper combines artificial neural networks (ANN), fuzzy optimization and time-series econometric models in one unified framework to form a hybrid intelligent early warning system (EWS) for predicting economic crises. Using quarterly data on 12 macroeconomic and financial variables for the Chinese economy during 1999 and 2008, the paper finds that the hybrid model possesses strong predictive power and the likelihood of economic crises in China during 2009 and 2010 remains high.Computational intelligence; artificial neural networks; fuzzy optimization; early warning system; economic crises

    NutriFD: Proving the medicinal value of food nutrition based on food-disease association and treatment networks

    Full text link
    There is rising evidence of the health benefit associated with specific dietary interventions. Current food-disease databases focus on associations and treatment relationships but haven't provided a reasonable assessment of the strength of the relationship, and lack of attention on food nutrition. There is an unmet need for a large database that can guide dietary therapy. We fill the gap with NutriFD, a scoring network based on associations and therapeutic relationships between foods and diseases. NutriFD integrates 9 databases including foods, nutrients, diseases, genes, miRNAs, compounds, disease ontology and their relationships. To our best knowledge, this database is the only one that can score the associations and therapeutic relationships of everyday foods and diseases by weighting inference scores of food compounds to diseases. In addition, NutriFD demonstrates the predictive nature of nutrients on the therapeutic relationships between foods and diseases through machine learning models, laying the foundation for a mechanistic understanding of food therapy

    A Hybrid Intelligent Early Warning System for Predicting Economic Crises: The Case of China

    Get PDF
    This paper combines artificial neural networks (ANN), fuzzy optimization and time-series econometric models in one unified framework to form a hybrid intelligent early warning system (EWS) for predicting economic crises. Using quarterly data on 12 macroeconomic and financial variables for the Chinese economy during 1999 and 2008, the paper finds that the hybrid model possesses strong predictive power and the likelihood of economic crises in China during 2009 and 2010 remains high

    An Empirical Analysis of Industry Momentum in Chinese Stock Markets

    No full text
    This paper documents significant abnormal profits for industry momentum strategies in Chinese stock markets. Industry momentum remains profitable even after controlling for lead-lag effect, the January effect, and individual stock momentum. Moreover, momentum profits generated by industry-specific components are much larger than those generated by common-factor components of the Fama-French three-factor model and a delayed-reaction three-factor model. The findings provide new evidence that momentum profits are due to idiosyncratic risk and investors' underreaction to industry-specific information. The implication is that behavioral biases, market manipulation, and institutional trading are pivotal in explaining why stock prices do not incorporate industry-specific news instantaneously.asset pricing, behavioral biases, Chinese stock markets, industry returns, momentum,
    corecore