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Abstract

This article proposes a novel moment-based local cluster division optimization method in wireless sensor networks,
and improves the energy efficiency of local cluster area with uneven nodes distribution. In the proposed method,
first, each node estimates the higher moment of local sensors’ coordinates. Second, the current cluster zone is
divided into four quadrant zones with cluster head’s (CH) coordinates as central point. Finally, among the divided
quadrant zones, the slave CH is selected according to the higher moment to help the master CH optimize data
transmission in the local area. To use the higher moment effectively in segmentation of zone, we present a hybrid
higher moment method by computing the kurtosis coefficient of the sensors’ coordinates. When the coordinates
of sensors in a quadrant zone have higher kurtosis coefficient than a threshold, the quadrant zone is considered to
be a zone needed to be a slave CH. The simulation results show that the proposed method can increase system
throughput, decrease delay and packet loss rate, and enhance the energy efficiency.
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1. Introduction
Wireless sensor network (WSN) [1] has found many
applications in different areas, such as environmental
surveillance, intelligent building, health monitoring, etc.
Although there are many important aspects which need
to be taken into consideration when we are dealing with
the overall network design problem, energy efficiency
should be considered as the key design objective among
them. Therefore, minimizing the total energy consump-
tion (TEC) [2] for sensor data gathering is critical to
ensuring sustained operations of these large-scale
WSNs, even though minimizing TEC does not necessa-
rily maximize network lifetime, which also depends on
the balance of residual energy across the network.

How to efficiently utilize sensor nodes to prolong the
lifespan of WSNs has been a research topic. Clustering
is a key routing technique used to reduce energy con-
sumption. In the cluster scheme, several nodes are
elected as cluster heads (CHs), and then CHs aggregate
the data from the nodes of their respective cluster, often
referred to as leaf nodes (LNs), and forward the fusion
data to base station (BS). The most popular routing pro-
tocol based on cluster scheme is called LEACH [3],
which is proposed for CH selection by probability. How-
ever, LEACH selects the CHs by probability in each
round, so the actual number of CHs with the expected
number maybe different.
It is a critical problem that how many clusters should

be separated. As one of the most dominant factors in
clustered WSNs, the selection of CH can impact the
network performance. The optimal number of CHs is
an important parameter of WSN performance. Network
nodes will consume more energy if the number of CHs
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is too much or too little. Suitable cluster number will
prolong the lifetime of WSN and reduce energy con-
sumption in CH selection per round. To solve those dis-
advantages, a distance-based crowdedness clustering
(DCC) algorithm [3] to determine the CHs in sensor
networks under general node distribution is presented,
in which the number of CHs in sensor networks under
uniform node distribution is optimized through deriving
an analytical formula. However, their proposed scheme
is not suitable for all the deployment conditions, espe-
cially, unevenly distribution phenomenon which is likely
in sensor networks.
In this article, we propose a novel moment-based local

cluster division (MLCD) optimization method in WSNs.
The proposed method improves the energy efficiency of
local cluster area with uneven nodes distribution.
The rest of this article is organized as follows. Section

2 introduces the related study. Section 3 gives an energy
model, and elaborates the proposed MLCD algorithm.
Section 4 makes several experiments on many para-
meters such as the number and location of CHs, TEC
under different nodes scale. Finally, conclusion is sum-
marized in Section 5.

2. Related study
A CH in WSNs is responsible for receiving, processing,
and transmitting data from the LNs in its service area to
the BS, and hence it consumes much more energy than
an LN. The sensor nodes in the close proximity of a CH
may also run out of battery quickly due to frequent data
forwarding. Therefore, designating an optimal subset of
sensor nodes as CHs at appropriate locations is critical
to minimizing the TEC for prolonging the lifetime of
the entire network. There exist a large number of
research efforts in the literature that have been devoted
to solving various clustering problems with different
objectives.
One commonly adopted way to ensure load balance

and meet energy constraint of the entire network is to
rotate the role of a CH and form a corresponding clus-
ter on a random and periodical basis among all sensor
nodes. Classical LEACH is a traditional hierarchy topol-
ogy control algorithm. In LEACH, the node is selected
to be CH in turns. The alternation mechanisms of CHs
[4-10] balance the nodes energy consumption and pro-
long network lifetime.
Quan et al. [11] propose a robust energy-aware clus-

tering architecture for large-scale WSNs. Machado et al.
[12] study the clustered WSNs. Shu and Krunz [13]
consider optimization formulations under both determi-
nistic and stochastic setups, and propose two mechan-
isms for achieving balanced power consumption in the
stochastic case: a routing-aware optimal cluster planning
and a clustering-aware optimal random relay. Younis

and Akkaya [14] categorize the placement strategies into
static and dynamic depending on whether the optimiza-
tion is performed at the time of deployment or while
the network is operational, respectively. Azad and Kam-
ruzzaman [15] propose a transmission scheme and
determine the optimal ring thickness and hop size by
formulating network lifetime as an optimization pro-
blem. Houngbadji and Pierre [16] propose a novel dis-
tributed address assignment and routing scheme based
on a topic clustering system and fractal theory iterated
function systems. In [17], an adaptive energy-efficient
multi-sensor scheduling scheme is proposed for colla-
borative target tracking in WSNs. Kim et al. [18] pro-
pose a novel energy-efficient coverage-time optimized
dynamic clustering scheme for two-tiered WSNs used in
an outdoor monitoring application of home networking
systems.

3. The proposed MLCD method
The problem of determining the optimal number and
location of CHs for minimum TEC in sensor networks
with unevenly distribution phenomenon is formulated as
follows. We consider a WSN where n sensor nodes have
been deployed in a bounded L × L (m2) square region
and a single BS is located at (xBS,yBS), somewhere inside
or outside the network region. The location of each sen-
sor vi, i = 0, 1,..., n - 1, is denoted as (xi, yi). We assume
a one-hop communication model for both intra-cluster
(from LNs to their slave CHs) and inter-cluster (from
CHs to the BS) communication.
We first consider a scenario of even node distribution,

and adopt DCC method [2] to optimize the number of
CHs. For uneven node distribution, the intra-cluster
energy consumption model may not demonstrate the
intra-cluster energy consumption correctly. To solve
this problem, we use the higher moment to demonstrate
the intra-cluster energy consumption correctly in this
article. The intra-cluster data can be translated to CH
through the new CH divided by the old CH so as to
optimize the data transmission.
We consider the energy consumption for data trans-

mission of each LN, and for idle state, data receiving,
processing, and transmission of each CH. Since the
energy cost for environment sensing is generally much
less than communication and processing tasks, we do
not consider sensing energy cost here. Obviously, the
TEC depends on the network distribution, the number,
and location of CHs, and the compression ratio a at
CHs.

3.1. Optimizing the number of CHs in uniform
distribution
Researchers have proposed several optimal CH selection
algorithms to prolong the lifetime of WSNs. Yang and
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Sikdar [19] first apply a sleep-wakeup-based decentra-
lized MAC protocol to LEACH, then present an analytic
framework for obtaining the optimal probability with
which a node becomes a CH in order to minimize the
network’s energy consumption. Gu and Wu [2] optimize
the number of CHs in sensor networks under uniform
node distribution, and propose a DCC algorithm to
determine the CHs in sensor networks under general
node distribution.
DCC algorithm first calculates the expected distances

from an LN to its CH and from a CH to the BS using
an approach similar to the one used in [18]. Since the
CHs are uniformly distributed in an L × L (m2) sensor
network region, the expected square area covered by
each cluster with the CH deployed at (xCH, yCH) can be

calculated as
√
L2/k× √

L2/k based on Voronoi tessella-

tion, where k is the optimal the number of CHs.
Furthermore, the LNs are also uniformly and indepen-
dently deployed in each cluster, where we have E[xLN] =

E[xCH] = E[yLN] = E[yCH] =
√
L2/k/2 , and E[(xLN)

2] = E

[(xCH)
2] = E[(yLN)

2] = E[(yCH)
2] = L2/(3k). Therefore, the

average squared distance from an LN to its CH within a
cluster can be calculated as follow.

r2 = E
[
(xLN − xCH)2 +

(
yLN − yCH

)2]
= E

[
(xLN)2

] − 2E [xLN] E [xCH] + E
[
(xCH)2

]
+ E

[(
yLN

)2] − 2E [xLN] E [xCH] + E
[(
yCH

)2]
=
L2

3k

(1)

Then, the average squared distance from a CH to the
BS is similarly given by Equation (2).

R2 = E
[
(xCH − xBS)2 +

(
yCH + yCH

)2] =
2
3
L2 (2)

The TEC per round denoted by ETot is the sum of the
energy consumption ELN of all LNs for data transmis-
sion and the energy consumption ECH of all CHs for
data receiving, processing, and transmission in one
round, which can be defined as Equation (3).

ETot = ELN + ECH (3)

Since ELN only contains transmission energy cost Et
and the total number of LNs in the network is n - k,
ELN can be estimated as shown in Equation (4).

ELN = (n− k) Et = (n− k)
(
Eelec + εfs · r2

)
(4)

Similarly, ECH is the total energy cost for the transfer
of one unit of data from each CH to the BS in one
round, which includes the energy cost Er for receiving,

Ep for processing, and Et for transmission. Each of n - k
LNs transfers one unit of data to its corresponding CH,
which performs processing (aggregation and compres-
sion) on the received data and its own sensing data, and
sends the compressed aggregated result to the BS. Since
there are total n units of input data (including n - k
units of data received from LNs and k units of data col-
lected by k CHs themselves), the total energy consumed
by k CHs is defined by Equation (5).

ECH = (n− k) Er + nEp + αkEt

= (n− k) Eelec + nEp + αk
(
Eelec + εmp · R4) (5)

Using Equations (1)-(5), we obtain the TEC per round
ETot as follows:

ETot = (2n− 2k + αk) Eelec + nEp

+ (n− k) εfs
L2

3k
+ αkεmp

4L4

9

(6)

The TEC per round ETot can be minimized by select-
ing an optimal value of k, which is a solution to the first
derivation of Equation (6). Following that, the optimal
number k of CHs can be calculated as (the negative
solution is ignored):

k =

√
3nL2εfs

9(α − 2)Eelec + 4αL4εmp
(7)

We further verify that the solution to the second deri-
vation of Equation (6) is positive. Therefore, we con-
clude that the value of k defined in Equation (7) results
in the minimum TEC in WSNs with uniform node dis-
tribution. Once the optimal number of CHs is obtained,
their locations can be determined based on Voronoi tes-
sellation among uniformly distributed sensors.

3.2. The proposed algorithm based on higher moment for
uneven distribution
Unimodal distribution has two eigenfunctions, including
skewness and kurtosis. Coefficient of skewness is the
ratio of the third central moment to the third power of
standard deviation. Coefficient of kurtosis is the ratio of
the fourth central moment to the fourth power of stan-
dard deviation. If the coefficient of kurtosis is above 3,
the distribution is sharp and has the excess kurtosis. In
this case, the distribution concentrates around the
expectation. If the coefficient of kurtosis approaches to
1.8, the distribution curve has a shape of horizontal rec-
tangle. If the coefficient of kurtosis is below 1.8, the dis-
tribution curve has a shape of ‘U’. The coefficient of
kurtosis (Kc) is given in Equation (8).

Zhang et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:133
http://jwcn.eurasipjournals.com/content/2012/1/133

Page 3 of 9



Kc = μ4/σ 4 =
1
n

n∑
i=1

(xi − x)4
/[

1
n

n∑
i=1

(xi − x)2
]2

(8)

where μ4 is the fourth moment about the mean, s is
the standard deviation, n is the sample size, xi is the ith
value, and x is the sample mean.
Uniform distribution is suited for achieving energy

balance. However, the performance of WSN is affected
by the environment. Since sensor nodes are generally
deployed in surveillance areas by airplane and cannon-
ball, node’s position is affected by many factors, which
leads to unevenly distribution. Maybe nodes in some
areas are very thick, while nodes in other areas are very
thin. Uneven distribution phenomenon brings many dis-
advantages in network management, such as unbalanced
energy dissipation between nodes, nodes’ premature
death, and network lifetime short.
According to the energy model and DCC algorithm, in

the case of the uneven distribution, the intra-cluster
energy consumption model may not demonstrate the
intra-cluster energy consumption correctly. To solve
this problem, we use kurtosis to demonstrate the intra-
cluster energy consumption correctly in this article. The
intra-cluster data can be translated to CH through the
new CH divided by the old CH so as to optimize the
data transportation.
As far as the CHs total number, the optimal CHs

number calculated by the cutoff-distance is still avail-
able, the optimal node number k of general distribution
and uneven distribution is still calculated as the case of
even distribution.
The algorithm given above does not consider the

energy consumption of CHs idle time. If the energy con-
sumption of CHs idle time EI is considered, and EI =
Eelec, the energy consumption of CHs will increase as
shown in Equation (9).

ECH = (n− k) Er + nEp + αkEt + ktEI
= (n− k + kt) Eelec + nEp

+ αk
(
Eelec + εmp · R4) (9)

where t is the total idle time of the CHs. Excessive
CHs will increase the energy consumption of CHs idle
time. Therefore, decreasing the CHs number properly
will decrease the network energy consumption. Corre-
spondingly, the optimal number k of CHs considering
total idle time of the CHs is

k =

√
3nL2εfs

9(α − 2 + t)Eelec + 4αL4εmp
(10)

We develop a heuristic MLCD algorithm, based on
higher moment to solve the CH optimization problem

in WSNs under uneven node distribution. Here, the
“higher moment” is the threshold that decides which
cluster needs to be divided: if the higher moment of
LNs’ coordinates satisfies the threshold, the slave CH is
considered to be located inside this cluster; otherwise, it
is not.
In the MLCD algorithm, we first calculate the LNs

coordinates’ kurtosis coefficient and mean value, each of
which is used as the metric. Using this metric, we desig-
nate the sensor with the comparatively large number of
neighbor nodes as a CH and form a slave cluster of the
master cluster with its crowded LNs. Namely, MLCD
designates the sensor with the comparative large num-
ber of neighbor nodes as a CH and forms a cluster of
this CH with all its neighbors considering the energy
consumption of the CHs idle time. We repeatedly desig-
nate slave CHs with crowded neighbor nodes in the rest
of the clusters using the higher moment until there is
no quadrant zones satisfied the higher moment metric.
We calculate the higher moment using Equation (8) for
metric, from which, the node is selected as the CH of
the slave cluster.
The specific division process is given as follows. First,

in setup phase, the intra-cluster zone is divided into
four quadrant zones. The central point (0,0) is the CH’s
coordinates. Second, the proposed MLCD algorithm col-
lects the intra-cluster coordinate information to calcu-
late the kurtosis of x and y coordinates, respectively. If
the kurtosis is below 1.8 as shown in Figure 1, the node
may concentrate their distribution not only on their
CHs zone, but also on another quadrant zone in current
cluster area from the aspect of x and y coordinates.
According to cutoff-distance, the elected CH may locate
in the zone with dense nodes.
However, the calculated number of CHs considering

the idle time energy consumption may decrease. In gen-
eral node distribution or uneven node distribution, the

CH

ACH

y

x

Y

X

Figure 1 The shape of U with kurtosis below 1.8.
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decrease of the CHs number may cause the uneven
communication distance in the cluster zone. The kurto-
sis can be used to find another quadrant zone with
comparatively dense node. If the kurtosis is below 1.8,
the nodes’ distribution has a shape of ‘U’. The quadrant
zones with comparatively dense nodes could be dis-
cerned, and a sub-cluster is formed in the quadrant. In
other words, a slave CH is designated besides the cur-
rent CH and the nodes in the same quadrant will
choose to join either the CH or slave CHs once more.
The slave CH collects the data of intra-cluster and
sends it to the CH. The proposed algorithm optimizes
the local energy consumption, balance the intra-cluster
energy consumption. Moreover, the total CHs energy
consumption is decreased due to the shortening of idle
time.
The choice of slave CHs will consider the kurtosis of

node coordinates. If the kurtosis of both x and y coordi-
nates are below 1.8, the slave CH will be selected beyond
the mean value of the both coordinates. If either x or y
coordinates is below 1.8, the CH will be selected randomly
beyond the mean value of the coordinates below 1.8.
This article presents an MLCD method. The pseudo-

code of MLCD algorithm is given in Algorithm 1. The
CHs idle time is considered to decrease the number of
the CHs number. The kurtosis is used to demonstrate
the slave cluster zone within the main cluster zone. The
complexity of this algorithm is O(n2).
Algorithm 1. MLCD
Input: a sensor network G = (V, E) with n LNs ran-

domly deployed in a L × L (m2) square region and one
BS deployed inside or outside the region.
Output: the optimal slave CH and its location with

minimum TEC.
1://Initialize cluster setup;
2: for all CHs in sensor network G do
3: Advertise the CH identity CHID;
4: Collect the LNs’ coordinates [xi, yi];
5: end for
6://Calculate the LNs’ higher moment;
7: for all CHs in sensor network G do
8: Divide the LNs zone from vertical and horizontal

direction through the CH node to form 4 quadrants zone;
9: Calculate the [xi, yi]’s kurtosis coefficient [Kcx, Kcy]

and mean value coordinates [xmean, ymean];
10: if Kcx > 3 and Kcy > 3 then
11: Designate a node with the absolute value of coor-

dinates above [|xmean|, |ymean|] as slave CH randomly;
12: end if
13: if Kcx > 3 then
14: Designate a node with the absolute value of x

coordinates above [|xmean|, yrandom] as slave CH;
15: end if
16: if Kcy > 3 then

17: Designate a node with the absolute value of y
coordinates above [yrandom, |ymean|] as slave CH;
18: end if
19: Designate the LNs in the same quadrants with

slave CH to form slave cluster;
20: end for
21: return slave CH and coordinates.

4. Performance evaluation
4.1. Implementation and experimental settings
The proposed MLCD algorithm is implemented in Java
and runs on a Windows XP desktop equipped with an 8
cores CPU and 4 GB memory. We conduct an extensive
set of experiments using a wide variety of simulated sen-
sor networks, in which two deployment scenarios are
considered: uniform and uneven distributions. We gen-
erate these simulation datasets by varying the size of
network regions and the number of initially deployed
sensor nodes. The parameters used in the testing sensor
networks and the sensor radio characteristics of the
energy cost models for wireless communication are
tabulated in Table 1. For testing purposes, we consider
a fixed value 0.8 for the compression ratio a, which has
an impact on the clustering process.
We first investigate the optimization problem on the

number and location of CHs in a sensor network within
a square region of 200 × 200 (m2) under uniform distri-
bution. Figure 2 plots the TEC optimization curve that
is calculated by Equation (7) in the network of n = 200
sensor nodes in response to the number k of CHs vary-
ing from 1 to 60.
We obtain the optimal number of CHs to be k = 6

from Equation (7), which is consistent with the optimal
one observed in Figure 2. From Equation (10), the
improved algorithm obtains the optimal number of CHs
to be k = 4, which is consistent with the optimal one
observed in Figure 2 and the TEC decreases as the
number of CHs decreases. The TEC increases as the
number of CHs moves away from the optimal point.
We further study a case with a larger WSN of n = 900
sensor nodes. The optimal number 13 is obtained in
DCC algorithm. Our proposed MLCD algorithm obtains
the optimal number 11. The TEC also decreases as the
number of CHs decreases. The unimodal property of

Table 1 WSN communication parameters

Parameter Value

L × L 200 × 200 (m2)

Eelec Eelec 50 (nJ/bit)

εfs 10 (pJ/bit/m2)

εmp 0.0013 (pJ/bit/m4)

Ep 5 (nJ/bit/signal)

Α 0.8
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the TEC optimization curve justifies the correctness of
our derivation for the optimal number of CHs in WSNs
under uniform node distribution.
To evaluate the robustness of our solution, we per-

form more experiments on networks under uniform dis-
tribution with 10 different problem sizes from small to
large ones: in the first case, the total number of initial
sensor nodes is set to be 10; in the rest 9 cases, it
increases from 100 to 900 nodes at an interval of 100

nodes. The optimization results, i.e., the optimal number
of CHs, the expected distance from an LN to its CH,
and the corresponding minimum TEC in each case, are
plotted in Figure 3. We observe that the expected dis-
tance from an LN to its CH varies from 32 to 116 m
and it decreases when the optimal number of CHs
increases.

4.2. Case study for general distribution
To better illustrate the optimization process of MLCD
in WSNs under uneven node distribution, we calculate
and plot the TEC per round under different cut-off dis-
tances at each optimization step for a network of n =
200 sensor nodes deployed in the same region, as shown
in Figure 4. This three-dimensional optimization curve
also features a unimodal property: the TEC is minimized
with an optimal number of CHs at a certain cut-off
distance.
For performance comparison, we adapt DCC to our pro-

blem and compare its performance with that of the pro-
posed MLCD algorithm using the same set of ten problem
sizes previously considered for uniform distribution. We
first determine the optimal number k of CHs and the cor-
responding minimum TEC using the DCC algorithm. For
visual comparison, we plot the performance measure-
ments of TEC produced by these two algorithms in Figure
5. The results produced by the MLCD algorithm outper-
form those produced by DCC algorithm in all ten cases
we studied, which shows the performance superiority of
the proposed MLCD algorithm.
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For illustration purposes, we lay out the node distribu-
tion and clustering of the sensor network with 100 sensor
nodes as shown in Figure 6, in which the unclustered
solid node denotes the BS. The clustering results
obtained by the MLCD algorithm are marked by the
solid lines while the results obtained by the adaptive k-
means algorithm are marked by the dashed lines. The
MLCD algorithm produces six clusters in this instance.
Using the same network instance of 100 sensor nodes,

we visually compare the clustering results obtained by the
MLCD algorithm and the DCC algorithm, as shown in
Figure 7. The 6 clusters marked by the solid lines are
obtained by the MLCD algorithm (the same MLCD clus-
ters in Figure 6), and the 14 clusters marked by the dashed
lines are obtained by the DCC algorithm. In Figure 7, we
observe that MLCD algorithm decrease the CHs number,
and achieve a more reasonable clustering result than DCC

algorithm in terms of local sensor density. The TEC of
MLCD is lower than that of DCC algorithm.

5. Conclusion
This article examines the problem of determining the opti-
mal number and location of CHs for minimum TEC in
sensor networks with uneven nodes distribution from
higher moment perspective, improves the analytical for-
mula of DCC to determine the optimal number, and loca-
tion of CHs in WSNs under uneven distribution, and
proposes a zone division clustering algorithm based on
higher moment to optimize the intra-cluster communica-
tions and location of slave CHs in WSNs under uneven
nodes distribution. The simulation results illustrate the
performance superiority of the proposed solution in com-
parison with the clustering schemes based on classical k-
means algorithm and DCC algorithm.
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