99 research outputs found

    Euclidean random matrix theory: low-frequency non-analyticities and Rayleigh scattering

    Full text link
    By calculating all terms of the high-density expansion of the euclidean random matrix theory (up to second-order in the inverse density) for the vibrational spectrum of a topologically disordered system we show that the low-frequency behavior of the self energy is given by Σ(k,z)k2zd/2\Sigma(k,z)\propto k^2z^{d/2} and not Σ(k,z)k2z(d2)/2\Sigma(k,z)\propto k^2z^{(d-2)/2}, as claimed previously. This implies the presence of Rayleigh scattering and long-time tails of the velocity autocorrelation function of the analogous diffusion problem of the form Z(t)t(d+2)/2Z(t)\propto t^{(d+2)/2}.Comment: 27 page

    Memory-encoding vibrations in a disconnecting air bubble

    Get PDF
    Many nonlinear processes, such as the propagation of waves over an ocean or the transmission of light pulses down an optical fibre1, are integrable in the sense that the dynamics has as many conserved quantities as there are independent variables. The result is a time evolution that retains a complete memory of the initial state. In contrast, the nonlinear dynamics near a finite-time singularity, in which physical quantities such as pressure or velocity diverge at a point in time, is believed to evolve towards a universal form, one independent of the initial state2. The break-up of a water drop in air3 or a viscous liquid inside an immiscible oil4,5 are processes that conform to this second scenario. These opposing scenarios collide in the nonlinearity produced by the formation of a finite-time singularity that is also integrable. We demonstrate here that the result is a novel dynamics with a dual character

    A Distinct Layer of the Medulla Integrates Sky Compass Signals in the Brain of an Insect

    Get PDF
    Mass migration of desert locusts is a common phenomenon in North Africa and the Middle East but how these insects navigate is still poorly understood. Laboratory studies suggest that locusts are able to exploit the sky polarization pattern as a navigational cue. Like other insects locusts detect polarized light through a specialized dorsal rim area (DRA) of the eye. Polarization signals are transmitted through the optic lobe to the anterior optic tubercle (AOTu) and, finally, to the central complex in the brain. Whereas neurons of the AOTu integrate sky polarization and chromatic cues in a daytime dependent manner, the central complex holds a topographic representation of azimuthal directions suggesting a role as an internal sky compass. To understand further the integration of sky compass cues we studied polarization-sensitive (POL) neurons in the medulla that may be intercalated between DRA photoreceptors and AOTu neurons. Five types of POL-neuron were characterized and four of these in multiple recordings. All neurons had wide arborizations in medulla layer 4 and most, additionally, in the dorsal rim area of the medulla and in the accessory medulla, the presumed circadian clock. The neurons showed type-specific orientational tuning to zenithal polarized light and azimuth tuning to unpolarized green and UV light spots. In contrast to neurons of the AOTu, we found no evidence for color opponency and daytime dependent adjustment of sky compass signals. Therefore, medulla layer 4 is a distinct stage in the integration of sky compass signals that precedes the time-compensated integration of celestial cues in the AOTu

    A search for ultrahigh-energy neutrinos associated with astrophysical sources using the third flight of ANITA

    Get PDF
    The ANtarctic Impulsive Transient Antenna (ANITA) long-duration balloon experiment is sensitive to interactions of ultrahigh-energy (E>1018 eV) neutrinos in the Antarctic ice sheet. The third flight of ANITA, lasting 22 days, began in December 2014. We develop a methodology to search for energetic neutrinos spatially and temporally coincident with potential source classes in ANITA data. This methodology is applied to several source classes: the potential IceCube-identified neutrino sources TXS 0506+056 and NGC 1068, flaring high-energy blazars reported by the Fermi All-Sky Variability Analysis, gamma-ray bursts, and supernovae. Among searches within the five source classes, one candidate was identified as associated with SN 2015D, although not at a statistically significant level. We proceed to place upper limits on the source classes. We further comment on potential application of this methodology to more sensitive future instruments

    An analysis of a tau-neutrino hypothesis for the near-horizon cosmic-ray-like events observed by ANITA-IV

    Get PDF
    We present the results of a simulation of the acceptance of the Antarctic Impulsive Transient Antenna (ANITA) to possible υτ point source fluxes detected via τ-lepton-induced air showers. This investigation is framed around the detection of four upward-going extensive air shower events observed very close to the horizon in ANITA-IV. These four events as well as the overall diffuse and point source exposure to Earth-skimming υτ are also compared against published ultrahigh-energy neutrino limits from the Pierre Auger Observatory. We find that while these four events were detected at sky coordinates close to ANITA’s maximum υτ sensitivity and were not simultaneously visible by Auger, the implied fluence necessary for ANITA to observe these events is in tension with limits set by Auger across a wide range of energies and is additionally in tension with ANITA’s Askaryan in-ice neutrino channel above 1019 eV

    Analysis of a tau neutrino origin for the near-horizon air shower events observed by the fourth flight of the Antarctic Impulsive Transient Antenna

    Get PDF
    We study in detail the sensitivity of the Antarctic Impulsive Transient Antenna (ANITA) to possible Formula Presented point source fluxes detected via Formula Presented-lepton-induced air showers. This investigation is framed around the observation of four upward-going extensive air shower events very close to the horizon seen in ANITA-IV. We find that these four upgoing events are not observationally inconsistent with Formula Presented-induced EASs from Earth-skimming Formula Presented both in their spectral properties as well as in their observed locations on the sky. These four events as well as the overall diffuse and point source exposure to Earth-skimming Formula Presented are also compared against published ultrahigh-energy neutrino limits from the Pierre Auger Observatory. While none of these four events occurred at sky locations simultaneously visible by Auger, the implied fluence necessary for ANITA to observe these events is in strong tension with limits set by Auger across a wide range of energies and is additionally in tension with ANITA’s Askaryan in-ice neutrino channel above Formula Presented. We conclude by discussing some of the technical challenges with simulating and analyzing these near horizon events and the potential for future observatories to observe similar events

    Ultrafast Light and Electrons: Imaging the Invisible

    Get PDF
    In this chapter, the evolutionary and revolutionary developments of microscopic imaging are overviewed with focus on ultrashort light and electrons pulses; for simplicity, we shall use the term “ultrafast” for both. From Alhazen’s camera obscura, to Hooke and van Leeuwenhoek’s optical micrography, and on to three- and four-dimensional (4D) electron microscopy, the developments over a millennium have transformed humans’ scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the visible shadows of candles at the centimeter and second scales, and ending with invisible atoms with space and time dimensions of sub-nanometer and femtosecond, respectively. With these advances it has become possible to determine the structures of matter and to observe their elementary dynamics as they fold and unfold in real time, providing the means for visualizing materials behavior and biological function, with the aim of understanding emergent phenomena in complex systems. Both light and light-generated electrons are now at the forefront of femtosecond and attosecond science and technology, and the scope of applications has reached beyond the nuclear motion as electron dynamics become accessible
    corecore