
 

Memory-encoding vibrations in a disconnecting 
air bubble 
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Many nonlinear processes, such as the propagation of waves 
over an ocean or the transmission of light pulses down an 
optical fibre1, are integrable in the sense that the dynamics 
has as many conserved quantities as there are independent 
variables. The result is a time evolution that retains a complete 
memory of the initial state. In contrast, the nonlinear dynamics 
near a finite-time singularity, in which physical quantities such 
as pressure or velocity diverge at a point in time, is believed 
to evolve towards a universal form, one independent of the 
initial state2. The break-up of a water drop in air3 or a viscous 
liquid inside an immiscible oil4,5 are processes that conform 
to this second scenario. These opposing scenarios collide in 
the nonlinearity produced by the formation of a finite-time 
singularity that is also integrable. We demonstrate here that 
the result is a novel dynamics with a dual character. 

We examine an experimentally accessible example: the 
disconnection of an air bubble from an underwater nozzle. An 
initial asymmetry in the neck shape excites vibrations about 
the symmetric dynamics. As the singularity approaches, the 
vibration amplitudes freeze, thus encoding information about 
the initial distortion. In contrast, the vibration frequencies chirp, 
scrambling the other half of the information. We begin by studying 
the disconnection dynamics without initial asymmetry. In the 
experiment, an air bubble is grown very slowly from a submerged 
nozzle until the pull of buoyancy overcomes surface tension and 
the bubble detaches (Fig. 1a). In this process, a column of air 
connecting the bubble cap and the nozzle elongates and thins before 
breaking apart (Fig. 1b). Figure 1c shows successive neck shapes. 
Initially the shape near the minimum has a generic quadratic profile. 
Closer to disconnection, the neck resembles two cones joined by a 
short cylindrical segment. 

Previous studies have suggested that, when the neck is long 
and slender, the radial motions of water at different heights along 
the bubble are entirely decoupled from one another6,7 . With this 
simplifying assumption, the time evolution of a single cross-
section corresponds to the implosion of a circular void inside 
an inviscid liquid exterior that is subjected to an overpressure of 
size /p. This is a two-dimensional (2D) version of the classical 
three-dimensional Rayleigh–Plesset collapse8. The void radius R(t ) 
follows a Hamiltonian evolution, with the Hamiltonian   

P2 

H (R,PR) = R 
+ /pπR2 

+ γ 2πR (1)
2M (R)

where PR = M (R)dR/dt is the radial momentum of the inward 
flow, M (R) = 2ρπ R2 ln(R∞/R) is the mass of liquid in motion, 
ρ is the liquid density and γ the line tension, the 2D analogue 
of surface tension. As an isolated disturbance in an Euler flow 
does not decay to zero at infinity, the expression for the effective 

mass M (R) has a logarithmic dependence on R∞, the radial 
extent of the liquid exterior. This system size is taken to be 
much larger than all other length scales. Applying Hamilton’s 
equations of motion Ṙ= ∂H/∂PR, ṖR = −∂H/∂R to H (R,PR) yields 
equations governing the shape evolution. These can be recast into 
the form ρ[(Ṙ2/2) − (Ṙ2 

+ RR̈) ln(R∞/R)] = /p + γ /R, which is 
the 2D analogue of the Rayleigh–Plesset equation for spherical 
implosion8. This formulation makes it clear that, in the absence 
of asymmetry, the implosion is integrable with one degree of 
freedom, the radius R, and one conserved quantity, the total energy 
E ≡ H (R(t = 0),PR(t = 0)). 

The initial situation most relevant for the experiment (Fig. 1) 
corresponds to a large void inside a quiescent liquid exterior. The 
potential energy term due to the overpressure /p dominates in 
the first instants. As the implosion proceeds and R decreases, the 
line-tension term becomes negligible. Eventually, R becomes so 
small that only the kinetic energy (the term in square brackets) 
dominates and equation (1) simplifies to   2PR 

2 M (R) dR 
= = E (2)

2M (R) 2 dt

The implosion process described by equation (1) converts the initial 
potential energy due to /p into kinetic energy during the final 
closure. Equation (2) also shows clearly that closure corresponds 
to the formation of a finite-time singularity in the mathematical 
model. The effective mass M (R) decreases to zero as R goes 
to zero. As a result, the closure rate dR/dt diverges to ensure 
energy conservation. 

In Fig. 1c, we compare the shape evolution predicted by the 
model, equation (2), with the experiment (see the Methods sec
tion). The calculated profiles are in good agreement with the 
experiment, except for a slight up–down asymmetry, probably 
owing to the 2D model ignoring the effect of the hydrostatic pres
sure gradient. This demonstrates that the measured disconnection 
essentially corresponds to that predicted by an idealized model that 
identifies the disconnection with an integrable singularity. 

We next show that a perturbation from circular symmetry to 
the 2D implosion yields vibrations that change the character of the 
disconnection (see the Methods section). A shape slightly distorted 
from a perfect circle is represented as a sum of Fourier modes, i 
r = S(θ , t ) = R̄(t ) + n an(t ) cos(φn(t )) cos(nθ), where R̄(t ) is the 
average radius, an(t ) is the amplitude and φn(t ) is the phase of 
the nth Fourier mode (Fig. 2a). When the distortion is small, the 
averaged implosion dynamics is the same as that for a circular 
void, so that R̄(t ) is also described by equations (1) and (2). Also, 
because the interface is on average accelerating inwards radially, 
the different Fourier modes have the form of standing waves. A 
distorted void vibrates as it implodes. This vibration is induced 
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Figure 1 | Cylindrically symmetric disconnection dynamics. a, Image of an 
air bubble detaching from a submerged circular nozzle. The bubble is lit 
from the back, so the bright spots are optical artifacts. b, Close-up images 
of the bubble neck at different times before disconnection, separated by 
15 µs. c, Measured profiles (diamonds) of the bubble neck at 240, 180, 120, 
60, 30 and 1 µs (outer to inner) before disconnection. The solid lines are 
profiles calculated using equation (2). 

and sustained by the disturbance flow and the azimuthal variations 
in the exterior pressure field. Because both effects are inertial in 
origin, the vibrations found here are fundamentally different from 
the more familiar, surface-tension-induced shape vibrations first 
studied by Rayleigh9. In our case, the only effect of surface tension 
is to modify slightly the transient dynamics connecting the initial 
state to the final singularity. 

As information about the initial state is encoded by the 
amplitudes and the phases of the Fourier modes, their time 
evolution reveals how such information survives near a singularity. 
First consider the amplitudes. We find that, as t approaches t∗, the 
moment when a circular void shrinks to a point, the amplitudes of 
all the modes ‘freeze’, 

danlim → 0 (3)
t →t∗ dt 

As a result of this saturation, the weakly perturbed void closure 
dynamics has a countably infinite set of constants of motion. 
Together they encode half of the information about the initial 
distortion from circular symmetry. This freezing also causes the 
void to become more distorted as R goes to zero. In Fig. 2b we ¯
plot void shapes at successive times after they have been rescaled 
by R. Initially the void is nearly a circle. As time goes on, the ¯
void vibrates and evolves into a self-contact, in which opposing 
sides of the void surface touch in a finite amount of time. The 
cylindrically symmetric singularity at t∗ is pre-empted. The presence 
of an asymmetry, however small, is therefore predicted to change 
the nature of the singularity entirely. 

Next consider the phases of the different Fourier modes. 
As the singularity approaches, the frequency of the nth vibra
tional mode ‘chirps’, 
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Figure 2 | Linear stability analysis of perturbed implosion. a, The void 
shape, S(θ), is perturbed from a circle by an n = 2 Fourier mode (black solid 
line). b, Void shapes at successive times, rescaled by the average radius. As 
time goes on, the void vibrates and evolves into side-by-side lobes. 

√ 
dφn n − 1 dR̄

lim → (4)
t →t∗ dt R̄(t ) dt 

The frequency increases over time, becoming infinite as the singu√ 
larity approaches. Equivalently, the phase φn(t ) = n − 1 ln[R̄(t )/
R̄(t = 0)]. As a consequence, backing out the relation between the 
different phases in the initial distortion requires higher and higher 
precision in the values of φn(t ) as R̄ goes to zero. In this sense, half 
of the information about the initial state, the half encoded in the 
initial phase relations, is lost. 

Both the freezing of the amplitudes and the chirping of the 
frequencies are also found in the experiment. We choose an 
experimental geometry that corresponds to the perturbation of a 
circular implosion by an n = 2 mode. This is accomplished by 
growing an air bubble slowly from a slot-shaped nozzle (Fig. 3a). 
Because the bubble is attached to a slot, the cross-section of the neck 
in the neighbourhood of the minimum is an oval (Fig. 3b), instead 
of a circle (as was the case in the experiment shown in Fig. 1). We 
track the neck shape by using two high-speed cameras positioned at 
right angles to each other. 

Figure 4a shows two sets of data—the average radius at 
the minimum, R, for a bubble released from a slot (Fig. 3), ¯
compared with one released from a circular nozzle (Fig. 1). 
The two data sets show the same behaviour on a log–log plot, 
indicating that the average dynamics produced by a slot release 
is indistinguishable from the cylindrically symmetric, integrable 
case. They are also consistent with results from other studies 
on circular nozzles10–15 . Figure 4b plots /R, the difference in 
the neck radii obtained from the two orthogonal views, versus 
the average radius R̄. Initially, surface tension and buoyancy 
effects are significant and /R decreases rapidly over time, 
showing that the neck is evolving towards a circular cross-
section. Later, as inertial effects associated with the disconnection 
become significant, /R no longer decreases monotonically but 
oscillates about zero with an approximately constant amplitude. 
Although the amplitude of this shape vibration is only a few 
micrometres, it is highly reproducible. A total of 42 measurements 
trace out the same curve. The saturation of the oscillation 
amplitude in /R is consistent with the freezing of the vibration 
amplitude (equation (3)). The oscillation period seems constant 
over ln( R̄), consistent with the chirping of the vibration frequency 
(equation (4)). Finally, we quantitatively compare the measured 
vibration against the linear stability results (see the Methods 
section). The calculated curve, the solid line in Fig. 4b, is in excellent 
agreement with the experiment. 
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Figure 3 | Set-up of experiment used to measure an n = 2 vibration. 
a, Schematic diagram: a bubble is blown slowly from a slot-shaped nozzle, 
back-lit and imaged with two high-speed cameras. b, Images of bubble 
while it is attached to this slot nozzle. The cross-section of the neck is 
extended along the slot. 

The unusual vibration modes found here are natural 
consequences of nearly integrable Hamiltonian dynamics. Previous 
analyses have shown that, when vorticity effects are absent, the 
evolution of an air–water interface is Hamiltonian16. This means 
that the time evolution of the void surface when the surface is 
slightly distorted from a perfect circle corresponds to a nearly 
integrable Hamiltonian dynamics. According to the Kolmogorov– 
Arnold–Moser theorem, the complete memory possessed by an 
integrable Hamiltonian evolution is not destroyed by a small 
perturbation to the Hamiltonian, regardless of the specific form 
of the perturbation17 . Instead, the memory is largely preserved. 
Specifically, almost all of the trajectories in the phase space, 
which describe the time evolution of the system for various initial 
conditions, survive under very general conditions on the form 
of the perturbation. Only a special set of trajectories, which are 
evenly distributed throughout phase space and correspond to 
‘resonant tori’, are destroyed. Typically, this persistence of memory 
is evident only in terms of transformed variables. What is gratifying 
about bubble disconnection is that, because it is associated 
with a finite-time singularity, the preservation of memory is 
apparent in a straightforward physical effect, the freezing of the 
vibration amplitudes. 

As the most efficient way to concentrate energy is to work 
with a dynamics with high spatial symmetry, many energy-focusing 
hydrodynamic singularities are integrable. They therefore should 
also support memory-encoding vibrations. We have checked this by 
looking at the shape-stability spectrum of three previously analysed 
examples: the collapse of a spherical bubble8 and the implosion of 
cylindrical18 and spherical shock waves19. In every case, the relative 

Figure 4 | Disconnection dynamics from a slot nozzle. a, Average radius at 
the minimum of the bubble neck produced by disconnection from a slot 
nozzle (red plus signs) and radius at the minimum of the cylindrically 
symmetric neck produced by disconnection from a circular nozzle (blue 
crosses) as a function of time before disconnection t∗ − t. The solid line is 
the calculation using equation (2) with E = 13 dynes (curve displaced 
downwards for clarity). b, The measured difference between the neck 
radius from the two orthogonal views, /R, as a function of the averaged 
radius R̄ (14 different data sets are included). The solid black line shows the 
linear stability result. 

amplitudes of the vibrations freeze whereas the frequencies chirp as 
the singularity approaches. (In the collapse of a spherical bubble and 
a spherical shock wave the absolute scale of the mode amplitudes 
increases weakly as the singularity approaches. This does not affect 
the memory-encoding mechanism, because the relative amplitudes 
of the vibrational modes are preserved.) 

These results suggest that memory-encoding vibrations should 
be a generic feature of energy focusing and may provide a rubric 
for thinking about the role of asymmetry in more complex 
processes, such as the development of a supernova20–22 , jetting 
due to the collapse of a cavity in granular matter23,24 and 
inertial fusion implosion25 . 

In contrast to the situations listed above, the bubble 
disconnection process analysed here is far more tractable for 
experimental investigation, making it possible for us to excite and 
measure one of the memory-encoding vibrational modes directly. 
This example reveals that, under competing demands of complete 
memory in integrable systems and the universal dynamics near 
a singularity, nature reaches a Solomonic decision. Half of the 
information about the early history is preserved by the vibrational 
mode amplitudes, whereas the other half, corresponding to the 
phases of the different vibrational modes, is scrambled. 



 

Methods 
Linear stability analysis. The shape of a distorted void can be written as i

∞ r = S(θ , t ) = R̄(t ) + n=2 bn(t ) cos(nθ), where R̄(t ) is the average radius and the 
coefficients bn(t ) ≡ an(t ) cos(φn (t )). As the exterior flow is incompressible and 
irrotational, the velocity field U = V Φ, where the velocity potential Φ satisfies 
Laplace’s equation V2Φ = 0. The velocity potential can be written as a sum of i

∞fundamental modes Φ(r, θ , t ) = Q(t ) ln(r)+ n=2 cn(t )[cos(nθ)/r
n
], where Q(t ) 

is the volumetric flow-rate and the coefficients cn(t ) are related to azimuthal 
variations in the velocity field. The kinematic boundary condition, Ṡ= U ·n|r=S(θ ,t ) 

where n is the surface normal and the overdot indicates differentiation with 
respect to time, yields Q(t ) = R̄R̄̇ and cn(t ) = − R̄n+1

[ḃn + bn(R̄̇/R̄)]/n. The 
evolution equation for bn(t ) follows from the normal-stress condition on the 
interface. For an interface in 2D with line tension γ , the exterior pressure 
p(r,t ) at the interface equals the void pressure p0 plus a Laplace pressure 
contribution γ κ , where κ is the 2D line curvature. To impose this pressure 
boundary condition, we first rewrite the momentum equation in terms of Φ 
and the exterior pressure p. This enables us to integrate the equation once over 
the spatial variables. The resultant Bernoulli integral relates p to derivatives of 
Φ as follows: ρ[ ∂Φ/∂t + |V Φ|

2/2 ]|r=R∞ 
r=S(θ ,t ) = −[ p(r = R∞ ) − p(r = S(θ , t ))]. 

The right-hand side of the equation is the difference in pressure from the far 
field, idealized as a surface at r = R∞ with p = p0 +/p, to the void surface where 
p = p0 −γ κ . When the void is nearly circular (|bn(t )/R̄(t )| « 1), the normal-stress 
condition can be expanded as a Taylor series in bn(t )/R̄(t ). At leading order, 
this procedure yields an evolution equation for R̄ that has the same form as 
equation (1). At O(bn (t )/R̄), this yields an ordinary differential equation (ODE) for 

¨ ¯ ¯bn (t ), bn +(2Ṙ/R̄)ḃn + [ (1−n)(R̈/R̄)+n(n2 
−1)(γ /(ρR̄3)) ]bn = 0. 

An initial asymmetry excites vibrations whose amplitudes freeze (equation (3) 
in main text) and whose frequencies chirp (equation (4)) as R̄→ 0. The coefficient 
of the bn term in the ODE controlling bn (t ) has two contributions. The first term is 
due to the acceleration of the interface on average and is proportional to R̈/R̄. The ¯
second term is due to the stabilizing effect of line tension and is proportional to 
γ /(ρR̄3). As R̄ goes to zero, both terms diverge but the second term diverges much 
more slowly than the first term. As a result, the effect of surface tension on the 
vibration becomes negligible near the singularity. To see this, first note that R̄ evolves 
as ρπ R̄2 R̄̇2 ln(R∞/R̄) = E (equation (2)) as R̄ goes to zero. As a logarithmic variation 
changes very slowly, a good estimate for the leading-order behaviour of R̄ is simply √ 
R̄≈ 

√ 
A(t∗ − t ) with A = 4E/(ρ π ln(R∞/R̄)). With this leading-order behaviour, 

we then see that the R̈/R̄ term diverges approximately as 1/(t∗ − t )2 , more rapidly ¯
than the O(1/(t∗ − t )3/2) divergence of the γ /(ρR̄3) term. In other words, as R̄→ 0 
the ODE for bn(t ) simplifies to b̈n − ḃn/(t∗ − t )+ [ (n− 1)/(4(t∗ − t )2) ]bn = 0, an 
equi-dimensional, second-order ODE supporting solutions in the form of (t∗ −t )m .√ 
Solving the simplified ODE yields m = ±i n−1/2, corresponding to vibrations 
whose amplitudes do not change over time. Eliminating t∗ − t and working with 
bn (R̄(t )) instead yields dan/dt → 0 as R̄ goes to zero, equivalent to equation (3). √ 
We also find that the nth vibrational mode chirps dφn/dt = n−1(Ṙ̄/R̄) as 
R̄ goes to zero, corresponding to a logarithmic variation in the phase variable √ 
(φn(t ) = n−1ln[R̄(t )/R̄(t = 0)] + φn(t = 0)). 

Theory curve in Fig. 1 c. To generate the theory curve, we first chose a value for E 
that enables equation (2), when starting with the initial value of the minimum neck 
radius, that is, R(t = 240 µs), to reproduce the observed closure time t∗. We then 
generate R(z,t = 0) by fitting a smooth curve through the experimental profile at 
240 µs (cubic spline). Finally, using R(z,t = 0) as our initial condition, we solve 
equation (2) at different heights and plot the outcome at successive times. 

Theory curve in Fig. 4. The linear stability curve is obtained by solving the 
unsimplified ODE for bn (t ). The values of the coefficients in the ODE, which 
depend on R̄, γ and n, are fixed as follows. The mode number n = 2. The average 
radius R̄ is governed by equation (2), with E again chosen to reproduce the observed 
closure time t∗ for the slot-nozzle experiment. To relate the value of γ , the 2D line 
tension, to σ , the surface tension at the air–water interface, we note that, in the 
experiment, the longitudinal radius of curvature, corresponding to the radius of a 
circle fitted to the neck minimum along the r–z plane, is linearly proportional to the 
average neck radius at the minimum. Thus the Laplace pressure contribution for the 
three-dimensional neck shape at the minimum has the form σ (κ − c/R̄(t )). From 
the data, the proportionality constant c is approximately 0.36. Requiring that the 2D 
line tension γ assumes a value that gives the correct Laplace pressure contribution 
at leading order in the normal-stress balance, that is, γ / R̄(t ) = σ (1−c)/R̄(t ), yields 

γ = 46 dynes cm−1. Finally, as the equation is second order in time, a unique time 
evolution requires two initial conditions, corresponding to fixing values of a2 and φ2 

at a specific value of R̄. Here we fix a2 and φ2 so that the theory curve coincides with 
the measurements at the maximum of /R(R̄), roughly where R̄ is 100 µm. 
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