65 research outputs found

    Rubredoxin Variant Folds without Iron

    Get PDF
    Pyroccocus furiosus rubredoxin (PFRD), like most studied hyperthermophilic proteins, does not undergo reversible folding. The irreversibility of folding is thought to involve PFRD’s iron-binding site. Here we report a PFRD variant (PFRD-XC4) whose iron binding site was redesigned to eliminate iron binding using a computational design algorithm. PFRD-XC4 folds without iron and exhibits reversible folding with a melting temperature of 82 °C, a thermodynamic stability of 3.2 kcal mol^(-1) at 1 °C, and NMR chemical shifts similar to that of the wild-type protein. This variant should provide a tractable model system for studying the thermodynamic origins of protein hyperthermostability

    Characterization of the Mechanosensitive Channel of Large Conductance

    Get PDF
    Osmoregulation is an essential process in bacteria and higher organisms regulated by the mechanosensitive ion channels. The mechanosensitive channel of large conductance (MscL) is an integral membrane protein that responds to pressure in an effort to prevent cell lysis during osmotic shock. Conversion of MscL from a membrane bound form to a water soluble form was attempted by three methods: computational design, random mutagenesis and chemical modification. The water soluble form of MscL was achieved with cysteine modification method. The stability, pH dependence, and C-terminal helix of MscL were also investigated. The structure of the cab beta-class carbonic anhydrase (Cab) has been determined to 2.1 A resolution. Cab exists as a dimer with a fold similar to plant beta-class carbonic anhydrases. The active site zinc is coordinated by Cys32, His87, and Cys90, with the tetrahedral coordination completed by a water molecule. The difference between plant and cab beta-class carbonic anhydrases is in the organization of the hydrophobic pocket. The structure reveals a Hepes molecule near the active site, suggesting a proton transfer pathway to the solvent. The structure of the nitrogenase iron protein in the all-ferrous [4Fe-4S]0 form has been determined to 2.2 A resolution. The structure demonstrates that major conformational changes are not necessary to accommodate cluster reduction to the [4Fe-4S]0 state. A survey of [4Fe-4S] clusters coordinated by four cysteine ligands reveals that the [4Fe-4S] cluster of the iron protein has the largest accessible surface area, suggesting that solvent exposure may be relevant to the capability of existing in three oxidation states. The role of surface salt bridges in protein stabilization has been investigated. The NMR structure of a rubredoxin variant (PFRD-XC4) and the thermodynamic analysis of two surface salt bridges is presented here. The analysis shows that the surface sidechain to sidechain salt bridge between does not stabilize PFRD-XC4. The mainchain to sidechain salt bridge, however, stabilizes PFRD-XC4 by 1.5 kcal mol-1. The entropic cost of making a surface salt bridge involving the protein's backbone is reduced, since the backbone has already been immobilized upon protein folding.</p

    Ab initio molecular-replacement phasing for symmetric helical membrane proteins

    Get PDF
    An ab initio molecular-replacement method for phasing X-ray diffraction data for symmetric helical membrane proteins has been developed. The described method is based on generating all possible orientations of idealized transmembrane helices and using each model in a molecular-replacement search

    Rubredoxin Variant Folds without Iron

    Full text link

    An Autonomous CDR3δ is Sufficient for γδ T Cell Recognition of the Nonclassical MHC-I T10/T22

    Get PDF
    It remains unclear whether γδ T cell receptors (TCRs) detect antigens in a manner similar to antibodies or αβ TCRs. Here we show that reactivity between G8 and KN6 γδ TCRs and the MHC class Ib molecule T22 can be transplanted, with retention of wild-type ligand affinity, after en bloc grafting of G8 and KN6 CDR3δ loops in place onto the CDR3α loop of an αβ TCR. We also find that a shared sequence motif within CDR3δ loops of all T22-reactive γδ TCRs binds T22 in energetically distinct fashions, and that T10d, which binds G8 with weak affinity, is converted into a high-affinity ligand by a single point mutation. These results demonstrate an unprecedented autonomy of a single CDR3 loop in antigen recognition

    Crystal Structure of Escherichia coli MscS, a Voltage-Modulated and Mechanosensitive Channel

    Get PDF
    The mechanosensitive channel of small conductance (MscS) responds both to stretching of the cell membrane and to membrane depolarization. The crystal structure at 3.9 angstroms resolution demonstrates thatEscherichia coli MscS folds as a membrane-spanning heptamer with a large cytoplasmic region. Each subunit contains three transmembrane helices (TM1, -2, and -3), with the TM3 helices lining the pore, while TM1 and TM2, with membrane-embedded arginines, are likely candidates for the tension and voltage sensors. The transmembrane pore, apparently captured in an open state, connects to a large chamber, formed within the cytoplasmic region, that connects to the cytoplasm through openings that may function as molecular filters. Although MscS is likely to be structurally distinct from other ion channels, similarities in gating mechanisms suggest common structural elements

    DPP6 Localization in Brain Supports Function as a Kv4 Channel Associated Protein

    Get PDF
    The gene encoding the dipeptidyl peptidase-like protein DPP6 (also known as DPPX) has been associated with human neural disease. However, until recently no function had been found for this protein. It has been proposed that DPP6 is an auxiliary subunit of neuronal Kv4 K+ channels, the ion channels responsible for the somato-dendritic A-type K+ current, an ionic current with crucial roles in the regulation of firing frequency, dendritic integration and synaptic plasticity. This view has been supported mainly by studies showing that DPP6 is necessary to generate channels with biophysical properties resembling the native channels in some neurons. However, independent evidence that DPP6 is a component of neuronal Kv4 channels in the brain, and whether this protein has other functions in the CNS is still lacking. We generated antibodies to DPP6 proteins to compare their distribution in brain with that of the Kv4 pore-forming subunits. DPP6 proteins were prominently expressed in neuronal populations expressing Kv4.2 proteins and both types of protein were enriched in the dendrites of these cells, strongly supporting the hypothesis that DPP6 is an associated protein of Kv4 channels in brain neurons. The observed similarity in the cellular and subcellular patterns of expression of both proteins suggests that this is the main function of DPP6 in brain. However, we also found that DPP6 antibodies intensely labeled the hippocampal mossy fiber axons, which lack Kv4 proteins, suggesting that DPP6 proteins may have additional, Kv4-unrelated functions

    Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire.

    Get PDF
    Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition

    The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels

    Get PDF
    The bacterial mechanosensitive channel MscL gates in response to membrane tension as a result of mechanical force transmitted directly to the channel from the lipid bilayer. MscL represents an excellent model system to study the basic biophysical principles of mechanosensory transduction. However, understanding of the essential structural components that transduce bilayer tension into channel gating remains incomplete. Here using multiple experimental and computational approaches, we demonstrate that the amphipathic N-terminal helix of MscL acts as a crucial structural element during tension-induced gating, both stabilizing the closed state and coupling the channel to the membrane. We propose that this may also represent a common principle in the gating cycle of unrelated mechanosensitive ion channels, allowing the coupling of channel conformation to membrane dynamics
    corecore