42 research outputs found

    Measurement of the production cross section of prompt Ξ0c baryons in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential production cross section of the promptly-produced charm-strange baryon Ξ0c (and its charge conjugate Ξ0cÂŻÂŻÂŻÂŻÂŻÂŻ) is measured at midrapidity via its hadronic decay into π+Ξ− in p−Pb collisions at a centre-of-mass energy per nucleon−nucleon collision sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The Ξ0c nuclear modification factor (RpPb), calculated from the cross sections in pp and p−Pb collisions, is presented and compared with the RpPb of Λ+c baryons. The ratios between the pT-differential production cross section of Ξ0c baryons and those of D0 mesons and Λ+c baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξ0c baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p−Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pT-integrated cross section of prompt Ξ0c-baryon production at midrapidity extrapolated down to pT = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p−Pb collisions at midrapidity

    Measurement of ℩0c baryon production and branching-fraction ratio BR(℩0c → ℩−e+Îœe)/BR(℩0c → ℊ−π+) in pp collisions at √s = 13 TeV

    No full text
    The inclusive production of the charm-strange baryon ℩0c is measured for the first time via its semileptonic decay into ℩−e+Îœe at midrapidity (|y| < 0.8) in proton–proton (pp) collisions at the centre-of-mass energy √s = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The branching-fraction ratio BR(℩0c → ℩−e+Îœe)/BR(℩0c → ℊ−π+) is measured to be 1.12 ± 0.22 (stat.) ± 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ0 photoproduction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the impact-parameter dependent angular anisotropy in the decay of coherently photoproduced ρ0 mesons is presented. The ρ0 mesons are reconstructed through their decay into a pion pair. The measured anisotropy corresponds to the amplitude of the cos(2ϕ) modulation, where ϕ is the angle between the two vectors formed by the sum and the difference of the transverse momenta of the pions, respectively. The measurement was performed by the ALICE Collaboration at the LHC using data from ultraperipheral Pb−Pb collisions at a center-of-mass energy of sNN−−−√ = 5.02 TeV per nucleon pair. Different impact-parameter regions are selected by classifying the events in nuclear-breakup classes. The amplitude of the cos(2ϕ) modulation is found to increase by about one order of magnitude from large to small impact parameters. Theoretical calculations, which describe the measurement, explain the cos(2ϕ) anisotropy as the result of a quantum interference effect at the femtometer scale that arises from the ambiguity as to which of the nuclei is the source of the photon in the interaction

    Measurement of Ωc0\Omega^0_{\rm c} baryon production and branching-fraction ratio BR(Ωc0→Ω−e+Îœe)/BR(Ωc0→Ω−π+){\rm BR(\Omega^0_c \rightarrow \Omega^- e^+\nu_e)} / {\rm BR(\Omega^0_c \rightarrow \Omega^- \pi^+)} in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe inclusive production of the charm-strange baryon Ωc0\Omega^{0}_{\rm c} is measured for the first time via its semileptonic decay into Ω−e+Îœe\Omega^{-}\rm e^{+}\nu_{e} at midrapidity (∣y∣<0.8|y|<0.8) in proton−-proton (pp) collisions at the centre-of-mass energy s=13\sqrt{s}=13 TeV with the ALICE detector at the LHC. The transverse momentum (pTp_{\rm T}) differential cross section multiplied by the branching ratio is presented in the interval 2<pT<12 GeV/c2<p_{\rm T}<12~{\rm GeV}/c. The branching-fraction ratio BR(Ωc0→Ω−e+Îœe)/BR(Ωc0→Ω−π+){\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\rm e}^{+}\nu_{\rm e})/ {\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\pi}^{+}) is measured to be 1.12 ±\pm 0.22 (stat.) ±\pm 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    Measurement of 3ΛH production in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    he first measurement of 3ΛH and 3Λ¯¯¯¯HÂŻÂŻÂŻÂŻ differential production with respect to transverse momentum and centrality in Pb−Pb collisions at sNN−−−√=5.02~TeV is presented. The 3ΛH has been reconstructed via its two-charged-body decay channel, i.e., 3ΛH→3He+π−. A Blast-Wave model fit of the pT-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the 3ΛH kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of 3ΛH and 3He is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements

    Investigating strangeness enhancement in jet and medium via φ(1020) production in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    This work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron (φ(1020) meson). Measuring h–φ correlations at midrapidity in p–Pb collisions at √sNN = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolution of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jet is studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the h–φ correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between h–φ and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the φ/h ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total φ(1020) yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying even

    Investigating Λ\Lambda baryon production in p−-Pb collisions in jets and underlying event using angular correlations

    No full text
    This paper presents the first measurements of hadron(h)−Λ-\Lambda azimuthal angular correlations in p−-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV using the ALICE detector at the LHC. These correlations are used to separate the production of associated Λ\Lambda baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet-axis (underlying event). The per-trigger associated Λ\Lambda yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle pTp_{\rm T} and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the ϕ(1020)\phi(1020) meson are also made. The final results indicate that strangeness production in the highest multiplicity p−-Pb collisions is enhanced relative to low multiplicity collisions in the jet-like regions, as well as the underlying event. The production of Λ\Lambda relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event.First measurements of hadron(h)−Λ-\Lambda azimuthal angular correlations in p−-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV using the ALICE detector at the LHC are presented. These correlations are used to separate the production of associated Λ\Lambda baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet-axis (underlying event). The per-trigger associated Λ\Lambda yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle pTp_{\rm T} and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the ϕ(1020)\phi(1020) meson are also made. The final results indicate that strangeness production in the highest multiplicity p−-Pb collisions is enhanced relative to low multiplicity collisions in the jet-like regions, as well as the underlying event. The production of Λ\Lambda relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event

    Measurement of the production and elliptic flow of (anti)nuclei in Xe–Xe collisions at √sNN = 5.44 TeV

    No full text
    Measurements of (anti)deuteron and (anti)3He production in the rapidity range |y|< 0.5 as a function of the transverse momentum and event multiplicity in Xe−Xe collisions at a center-of-mass energy per nucleon−nucleon pair of sNN−−−√ = 5.44 TeV are presented. The coalescence parameters B2 and B3 are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)3He yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density, and compared with two implementations of the statistical hadronization model (SHM) and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe−Xe collisions and shows features similar to those already observed in Pb−Pb collisions, i.e., the mass ordering at low transverse momentum and the meson−baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe−Xe collisions. The extracted chemical freeze-out temperature Tchem = (154.2 ± 1.1) MeV in Xe−Xe collisions is similar to that observed in Pb−Pb collisions and close to the crossover temperature predicted by lattice QCD calculations

    Charm fragmentation fractions and cc‟{\rm c\overline{c}} cross section in p−-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    The total charm-quark production cross section per unit of rapidity dσ(cc‟)/dy\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y, and the fragmentation fractions of charm quarks to different charm-hadron species f(c→hc)f(\mathrm{c}\rightarrow {\rm h_{c}}), are measured for the first time in p−-Pb collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV at midrapidity (−0.96<y<0.04-0.96<y<0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species: D0\mathrm{D}^{0}, D+\mathrm{D}^{+}, Ds+\mathrm{D}_\mathrm{s}^{+}, and J/ψ\mathrm{J/\psi} mesons, and Λc+\Lambda_\mathrm{c}^{+} and Ξc0\Xi_{\rm c}^{0} baryons. The resulting cross section is dσ(cc‟)/dy=219.6±6.3  (stat.)  −11.8+10.5  (syst.)  −2.9+7.6  (extr.)±5.4  (BR)±4.6  (lumi.)±19.5  (rapidity shape)+15.0  (Ωc0) \mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y =219.6 \pm 6.3\;(\mathrm{stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm{syst.}) {\;}_{-2.9}^{+7.6}\;(\mathrm{extr.})\pm 5.4\;(\mathrm{BR})\pm 4.6\;(\mathrm{lumi.}) \pm 19.5\;(\text{rapidity shape})+15.0\;(\Omega_{\rm c}^{0}) mb, which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at s=5.02\sqrt{s} = 5.02 and 1313 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with e+e−\mathrm{e^{+}e^{-}} and e−p\mathrm{e^{-}p} collisions. The pTp_\mathrm{T}-integrated nuclear modification factor of charm quarks, RpPb(cc‟)=0.91±0.04  (stat.)−0.09+0.08  (syst.)−0.03+0.04  (extr.)±0.03  (lumi.)R_\mathrm{pPb}({\rm c\overline{c}})= 0.91 \pm 0.04\;{\rm (stat.)}{}^{+0.08}_{-0.09}\;{\rm (syst.)}{}^{+0.04}_{-0.03}\;{\rm (extr.)}{}\pm 0.03\;{\rm (lumi.)}, is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions.The total charm-quark production cross section per unit of rapidity dσ(cc‟)/dy\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y, and the fragmentation fractions of charm quarks to different charm-hadron species f(c→hc)f(\mathrm{c}\rightarrow {\rm h_{c}}), are measured for the first time in p−-Pb collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV at midrapidity (−0.96<y<0.04-0.96<y<0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species: D0\mathrm{D}^{0}, D+\mathrm{D}^{+}, Ds+\mathrm{D}_\mathrm{s}^{+}, and J/ψ\mathrm{J/\psi} mesons, and Λc+\Lambda_\mathrm{c}^{+} and Ξc0\Xi_{\rm c}^{0} baryons. The resulting cross section is dσ(cc‟)/dy=219.6±6.3  (stat.)  −11.8+10.5  (syst.)  −2.9+7.6  (extr.)±5.4  (BR)±4.6  (lumi.)±19.5  (rapidity shape)+15.0  (Ωc0)\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y =219.6 \pm 6.3\;(\mathrm{stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm{syst.}) {\;}_{-2.9}^{+7.6}\;(\mathrm{extr.})\pm 5.4\;(\mathrm{BR})\pm 4.6\;(\mathrm{lumi.}) \pm 19.5\;(\text{rapidity shape})+15.0\;(\Omega_{\rm c}^{0}) mb, which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at s=5.02\sqrt{s} = 5.02 and 1313 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p−-Pb collisions compared with e+e−\mathrm{e^{+}e^{-}} and e−p\mathrm{e^{-}p} collisions. The pTp_\mathrm{T}-integrated nuclear modification factor of charm quarks, RpPb(cc‟)=0.91±0.04  (stat.)−0.09+0.08  (syst.)−0.03+0.04  (extr.)±0.03  (lumi.)R_\mathrm{pPb}({\rm c\overline{c}})= 0.91 \pm 0.04\;{\rm (stat.)}{}^{+0.08}_{-0.09}\;{\rm (syst.)}{}^{+0.04}_{-0.03}\;{\rm (extr.)}{}\pm 0.03\;{\rm (lumi.)}, is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions

    Investigating strangeness enhancement in jet and medium via ϕ\phi(1020) production in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    This work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron (ϕ(1020)\phi(1020) meson). Measuring h−ϕ-\phi correlations at midrapidity in p−-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolution of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jet is studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the h−ϕ-\phi correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between h−ϕ-\phi and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the ϕ/h\phi/\mathrm{h} ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total ϕ(1020)\phi(1020) yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying event.This work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron (ϕ(1020)\phi(1020) meson). Measuring h−ϕ-\phi correlations at midrapidity in p−-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolution of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jet is studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the h−ϕ-\phi correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between h−ϕ-\phi and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the ϕ/h\phi/\mathrm{h} ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total ϕ(1020)\phi(1020) yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying event
    corecore