3,569 research outputs found

    Deep human face analysis and modelling

    Get PDF
    Human face appearance and motion play a significant role in creating the complex social environments of human civilisation. Humans possess the capacity to perform facial analysis and come to conclusion such as the identity of individuals, understanding emotional state and diagnosing diseases. The capacity though is not universal for the entire population, where there are medical conditions such prosopagnosia and autism which can directly affect facial analysis capabilities of individuals, while other facial analysis tasks require specific traits and training to perform well. This has lead to the research of facial analysis systems within the computer vision and machine learning fields over the previous decades, where the aim is to automate many facial analysis tasks to a level similar or surpassing humans. While breakthroughs have been made in certain tasks with the emergence of deep learning methods in the recent years, new state-of-the-art results have been achieved in many computer vision and machine learning tasks. Within this thesis an investigation into the use of deep learning based methods for facial analysis systems takes place, following a review of the literature specific facial analysis tasks, methods and challenges are found which form the basis for the research findings presented. The research presented within this thesis focuses on the tasks of face detection and facial symmetry analysis specifically for the medical condition facial palsy. Firstly an initial approach to face detection and symmetry analysis is proposed using a unified multi-task Faster R-CNN framework, this method presents good accuracy on the test data sets for both tasks but also demonstrates limitations from which the remaining chapters take their inspiration. Next the Integrated Deep Model is proposed for the tasks of face detection and landmark localisation, with specific focus on false positive face detection reduction which is crucial for accurate facial feature extraction in the medical applications studied within this thesis. Evaluation of the method on the Face Detection Dataset and Benchmark and Annotated Faces in-the-Wild benchmark data sets shows a significant increase of over 50% in precision against other state-of-the-art face detection methods, while retaining a high level of recall. The task of facial symmetry and facial palsy grading are the focus of the finals chapters where both geometry-based symmetry features and 3D CNNs are applied. It is found through evaluation that both methods have validity in the grading of facial palsy. The 3D CNNs are the most accurate with an F1 score of 0.88. 3D CNNs are also capable of recognising mouth motion for both those with and without facial palsy with an F1 score of 0.82

    Luminosity indicators in dusty photoionized environments

    Get PDF
    The luminosity of the central source in ionizing radiation is an essential parameter in a photoionized environment, and one of the most fundamental physical quantities one can measure. We outline a method of determining luminosity for any emission-line region using only infrared data. In dusty environments, grains compete with hydrogen in absorbing continuum radiation. Grains produce infrared emission, and hydrogen produces recombination lines. We have computed a very large variety of photoionization models, using ranges of abundances, grain mixtures, ionizing continua, densities, and ionization parameters. The conditions were appropriate for such diverse objects as H II regions, planetary nebulae, starburst galaxies, and the narrow and broad line regions of active nuclei. The ratio of the total thermal grain emission relative to Hβ\beta (IR/Hβ\beta) is the primary indicator of whether the cloud behaves as a classical Str\"{o}mgren sphere (a hydrogen-bounded nebula) or whether grains absorb most of the incident continuum (a dust-bounded nebula). We find two global limits: when IR/Hβ<100IR/H\beta<100 infrared recombination lines determine the source luminosity in ionizing photons; when IR/Hβ100IR/H\beta\gg100 the grains act as a bolometer to measure the luminosity.Comment: 12 pages 3 figures. Accepted ASP Sept.9

    A Survey Of The Production, Utilization And Marketing Of Livestock And Livestock Products In Lesotho

    Get PDF

    Accurate Hydrogen Spectral Simulations with a Compact Model Atom

    Get PDF
    Many large scale numerical simulations of astrophysical plasmas must also reproduce the hydrogen ionization and the resulting emission spectrum, in some cases quite accurately. We describe a compact model hydrogen atom that can be readily incorporated into such simulations. It reproduces the recombination efficiency and line spectrum predicted by much larger calculations for a very broad range of densities and temperatures. Uncertainties in hydrogen collision data are the largest source of differences between our compact atom and predictions of more extensive calculations, and underscore the need for accurate atomic data.Comment: 18 pages, prepared in MS-Word, Postscript only, 12 Figures, also available at http://www.pa.uky.edu/~ferguson/bib/bib.html, accepted for publication in the Astrophysical Journa

    Temperature Variations from \u3cem\u3eHubble Space Telescope\u3c/em\u3e Imagery and Spectroscopy of NGC 7009

    Get PDF
    We present new Hubble Space Telescope (HST)/WFPC2 imagery and STIS long-slit spectroscopy of the planetary nebula NGC 7009. The primary goal was to obtain high spatial resolution of the intrinsic line ratio [O III] 4364/5008 and thereby evaluate the electron temperature (Te) and the fractional mean-square Te variation (tA2)across the nebula. The WFPC2 Temap is rather uniform; almost all values are between 9000–11 000 K, with the higher Te values closely coinciding with the inner He++ zone. The results indicate very small values–≲0.01– for tA2 throughout. Our STIS data allow an even more direct determination of Te and tA2, albeit for a much smaller area than with WFPC2. We present results from binning the data along the slit into tiles that are 0.5-arcsec square (matching the slit width). The average [O III] temperature using 45 tiles (excluding the central star and STIS fiducial bars) is 10 139 K; tA2 is 0.0035. The measurements of Tereported here are an average along each line of sight. Therefore, despite finding remarkably low tA2, we cannot completely rule out temperature fluctuations along the line of sight as the cause of the large abundance discrepancy between heavy element abundances inferred from collisionally excited emission lines compared to those derived from recombination lines

    Spitzer reveals what's behind Orion's Bar

    Get PDF
    We present Spitzer Space Telescope observations of 11 regions SE of the Bright Bar in the Orion Nebula, along a radial from the exciting star theta1OriC, extending from 2.6 to 12.1'. Our Cycle 5 programme obtained deep spectra with matching IRS short-high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin. Orion is the benchmark for studies of the ISM particularly for elemental abundances. Spitzer observations provide a unique perspective on the Ne and S abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.01+/-0.08)E-4. We obtained corresponding new ground-based spectra at CTIO. These optical data are used to estimate the electron temperature, electron density, optical extinction, and the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase S abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7-6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S = 13.0+/-0.6. We derive the electron density versus distance from theta1OriC for [S III] and [S II]. Both distributions are for the most part decreasing with increasing distance. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ~12' from theta1OriC. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region.Comment: 60 pages, 16 figures, 10 tables. MNRAS accepte

    Importance of randomization in microarray experimental designs with Illumina platforms

    Get PDF
    Measurements of gene expression from microarray experiments are highly dependent on experimental design. Systematic noise can be introduced into the data at numerous steps. On Illumina BeadChips, multiple samples are assayed in an ordered series of arrays. Two experiments were performed using the same samples but different hybridization designs. An experiment confounding genotype with BeadChip and treatment with array position was compared to another experiment in which these factors were randomized to BeadChip and array position. An ordinal effect of array position on intensity values was observed in both experiments. We demonstrate that there is increased rate of false-positive results in the confounded design and that attempts to correct for confounded effects by statistical modeling reduce power of detection for true differential expression. Simple analysis models without post hoc corrections provide the best results possible for a given experimental design. Normalization improved differential expression testing in both experiments but randomization was the most important factor for establishing accurate results. We conclude that lack of randomization cannot be corrected by normalization or by analytical methods. Proper randomization is essential for successful microarray experiments
    corecore