38 research outputs found

    Giant magnetoresistance in semiconductor / granular film heterostructures with cobalt nanoparticles

    Full text link
    We have studied the electron transport in SiO2{}_2(Co)/GaAs and SiO2{}_2(Co)/Si heterostructures, where the SiO2{}_2(Co) structure is the granular SiO2{}_2 film with Co nanoparticles. In SiO2{}_2(Co)/GaAs heterostructures giant magnetoresistance effect is observed. The effect has positive values, is expressed, when electrons are injected from the granular film into the GaAs semiconductor, and has the temperature-peak type character. The temperature location of the effect depends on the Co concentration and can be shifted by the applied electrical field. For the SiO2{}_2(Co)/GaAs heterostructure with 71 at.% Co the magnetoresistance reaches 1000 (10510^5 %) at room temperature. On the contrary, for SiO2{}_2(Co)/Si heterostructures magnetoresistance values are very small (4%) and for SiO2{}_2(Co) films the magnetoresistance has an opposite value. High values of the magnetoresistance effect in SiO2{}_2(Co)/GaAs heterostructures have been explained by magnetic-field-controlled process of impact ionization in the vicinity of the spin-dependent potential barrier formed in the semiconductor near the interface. Kinetic energy of electrons, which pass through the barrier and trigger the avalanche process, is reduced by the applied magnetic field. This electron energy suppression postpones the onset of the impact ionization to higher electric fields and results in the giant magnetoresistance. The spin-dependent potential barrier is due to the exchange interaction between electrons in the accumulation electron layer in the semiconductor and dd-electrons of Co.Comment: 25 pages, 16 figure

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π±Π°Ρ€ΡŒΠ΅Ρ€Π½Ρ‹Ρ… слоСв диоксида Ρ‚ΠΈΡ‚Π°Π½Π° для формирования ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ„Π΅Ρ€Ρ€ΠΎΠΈΠΊΠΎΠ² Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½Π΅Ρ‚ΠΈΠΊ/сСгнСтоэлСктрик

    Get PDF
    The layered multiferroics Co/PZT were obtained by ion-beam sputtering-deposition method, where PZT is a ferroelectric ceramic based on lead titanate zirconate of the composition PbZr0.45Ti0.55O3 with a thermostable plane-parallel ferroelectric/ferromagnet interface. Using cross-sectional scanning electron microscopy (SEM), we studied the interface of a cobalt layer up to several micrometers thick with a thick ceramic substrate of lead zirconate titanate. It has been shown that the use of a titanium dioxide barrier layer of TiO2 instead of PZT allows quality improvement of the interface by reducing the duration of ion-beam planarization of the ferroelectric substrate, and also to eliminate the formation of intermediate chemical compounds. Based on the data of X-ray phase analysis (XRD), it was concluded that the TiO2 layer is amorphous. Magnetoelectric measurements have shown that the use of titanium dioxide instead of PZT under appropriate planarization modes can increase the low-frequency magnetoelectric effect to 5 mV/(cmβˆ™ΠžΠ΅), compared with structures with a sputtering planarizing layer of PZT, where the magnitude of the low-frequency magnetoelectric effect is 2 mV/(cmβˆ™Πže). These results allow us to improve the characteristics of these structures when used as sensitive elements in devices for formation – processing of information and magnetic field sensors based on the magnetoelectric effect.Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠΎΠ½Π½ΠΎ-Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ распылСния – осаТдСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ слоистыС ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ„Π΅Ρ€Ρ€ΠΎΠΈΠΊΠΈ Co/Π¦Π’Π‘ (Π¦Π’Π‘ – сСгнСтоэлСктричСская ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠ° Π½Π° основС Ρ†ΠΈΡ€ΠΊΠΎΠ½Π°Ρ‚Π° Ρ‚ΠΈΡ‚Π°Π½Π°Ρ‚Π° свинца состава PbZr0,45Ti0,55O3 с Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ»ΠΎΡΠΊΠΎΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ интСрфСйсом сСгнСтоэлСктрик/Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½Π΅Ρ‚ΠΈΠΊ), ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ воспроизводимыми низкочастотными магнитоэлСктричСскими характСристиками ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ растровой элСктронной микроскопии (РЭМ) ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ сСчСния исслСдована Π³Ρ€Π°Π½ΠΈΡ†Π° Ρ€Π°Π·Π΄Π΅Π»Π° слоя ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ Π΄ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΌΠΈΠΊΡ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ² с толстой кСрамичСской ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΎΠΉ Ρ†ΠΈΡ€ΠΊΠΎΠ½Π°Ρ‚Π° – Ρ‚ΠΈΡ‚Π°Π½Π°Ρ‚Π° свинца. Показано, Ρ‡Ρ‚ΠΎ использованиС Π±Π°Ρ€ΡŒΠ΅Ρ€Π½ΠΎΠ³ΠΎ слоя диоксида Ρ‚ΠΈΡ‚Π°Π½Π° TiO2 вмСсто Π¦Π’Π‘ позволяСт Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ качСства интСрфСйса Π·Π° счСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΠΎΠ½Π½ΠΎ-Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ ΠΏΠ»Π°Π½Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ сСгнСтоэлСктричСской ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… химичСских соСдинСний. На основС Π΄Π°Π½Π½Ρ‹Ρ… Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (РЀА) сдСлан Π²Ρ‹Π²ΠΎΠ΄ ΠΎΠ± аморфности слоя TiO2, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с кристалличСским позволяСт Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ, Π±Π΅Π· искаТСний, ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Ρ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ напряТСния, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ сСгнСтоэлСктричСской ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΎΠΉ ΠΈ Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ слоСм. Π­Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π±ΠΎΠ»Π΅Π΅ эффСктивному магнитоэлСктричСскому Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ (Π² Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ – дСсятки ΠΌΠ’/А) низкочастотному магнитоэлСктричСскому эффСкту ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. ΠœΠ°Π³Π½ΠΈΡ‚ΠΎΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ измСрСния ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ использованиС диоксида Ρ‚ΠΈΡ‚Π°Π½Π° вмСсто Π¦Π’Π‘ ΠΏΡ€ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… ΠΏΠ»Π°Π½Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ низкочастотного магнитоэлСктричСского эффСкта Π΄ΠΎ 5 ΠΌΠ’/(см βˆ™Π­) ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ со структурами с Π½Π°ΠΏΡ‹Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ»Π°Π½Π°Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ слоя Π¦Π’Π‘, Π³Π΄Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π΄Π°Π½Π½ΠΎΠ³ΠΎ эффСкта составляСт 2 ΠΌΠ’/(см βˆ™Π­). Π­Ρ‚ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ характСристики ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… структур ΠΏΡ€ΠΈ использовании Π² качСствС Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов Π² устройствах формирования – ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π½Π° основС магнитоэлСктричСского эффСкта

    Ultrafast transport and relaxation of hot plasmonic electrons in metal-dielectric heterostructures

    No full text
    Owing to the ultrashort timescales of ballistic electron transport, relaxation dynamics of hot nonequilibrium electrons is conventionally considered local. Utilizing propagating surface plasmon-polaritons (SPs) in metal-dielectric heterostructures, we demonstrate that both local (relaxation) and nonlocal (transport) hot electron dynamics contribute to the transient optical response. The data obtained in two distinct series of pump-probe experiments demonstrate a strong increase in both nonthermal electron generation efficiency and nonlocal relaxation timescales at the SP resonance. We develop a simple kinetic model incorporating a SP excitation, where both local and nonlocal electron relaxation in metals are included, and analyze nonequilibrium electron dynamics in its entirety in the case of collective electronic excitations. Our results elucidate the role of SPs in nonequilibrium electron dynamics and demonstrate rich perspectives of ultrafast plasmonics for tailoring spatiotemporal distribution of hot electrons in metallic nanostructures

    Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics

    No full text
    We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale
    corecore