166 research outputs found
A Deep Multicolor Survey V: The M Dwarf Luminosity Function
We present a study of M dwarfs discovered in a large area, multicolor survey.
We employ a combination of morphological and color criteria to select M dwarfs
to a limiting magnitude in V of 22, the deepest such ground-based survey for M
dwarfs to date. We solve for the vertical disk stellar density law and use the
resulting parameters to derive the M dwarf luminosity and mass functions from
this sample. We find the stellar luminosity function peaks at M_V = 12 and
declines thereafter. Our derived mass function for stars with M < 0.6 M_sun is
inconsistent with a Salpeter function at the 3 sigma level; instead, we find
the mass function is relatively flat for 0.6 M_sun > M > 0.1 M_sun.Comment: Accepted for publication in AJ. 19 pages including 4 embedded
postscript figures (AASTEX
Internal rotation of subdwarf B stars: limiting cases and asteroseismological consequences
Observations of the rotation rates of horizontal branch (HB) stars show
puzzling systematics. In particular, cooler HB stars often show rapid rotation
(with velocities in excess of 10 km/s), while hotter HB stars typically show
much smaller rotation velocities. Simple models of angular momentum evolution
of stars from the main sequence through the red giant branch fail to explain
these effects. In general, evolutionary models in all cases preserve a rapidly
rotating core. The observed angular velocities of HB stars require that some of
the angular momentum stored in the core reaches the surface.
To test the idea that HB stars contain such a core, one can appeal to
detailed computations of trace element abundences and rotational mixing.
However, a more direct probe is available to test these limiting cases of
angular momentum evolution. Some of the hottest horizontal branch stars are
members of the pulsating sdB class. They frequently show rich pulsation spectra
characteristic of nonradially pulsating stars. Thus their pulsations probe the
internal rotation of these stars, and should show the effects of rapid rotation
in their cores. Using models of sdB stars that include angular momentum
evolution, we explore this possibility and show that some of the sdB pulsators
may indeed have rapidly rotating cores.Comment: accepted for publication in The Astrophysical Journa
EAGLE ISS - A modular twin-channel integral-field near-IR spectrograph
The ISS (Integral-field Spectrograph System) has been designed as part of the
EAGLE Phase A Instrument Study for the E-ELT. It consists of two input channels
of 1.65x1.65 arcsec field-of-view, each reconfigured spatially by an
image-slicing integral-field unit to feed a single near-IR spectrograph using
cryogenic volume-phase-holographic (VPH) gratings to disperse the image
spectrally. A 4k x 4k array detector array records the dispersed images. The
optical design employs anamorphic magnification, image slicing, VPH gratings
scanned with a novel cryo-mechanism and a three-lens camera. The mechanical
implementation features IFU optics in Zerodur, a modular bench structure and a
number of high-precision cryo-mechanisms.Comment: 12 pages, to be published in Proc SPIE 7735: Ground-based & Airborne
Instrumentation for Astronomy II
Nonlinear models of the bump cepheid HV 905 and the distance modulus to the large magellanic cloud
Nonlinear pulsation models have been used to simulate the light curve of the LMC bump Cepheid HV 905. In order to reproduce the light curve accurately, tight constraints on the input parameters M, L, and T-eff are required. The results, combined with accurate existing V and I photometry, yield an LMC distance modulus of 18.51 +/- 0.05, and they show that the luminosity of HV 905 is much higher than expected from the mass-luminosity relation of stellar evolution theory. If we assume that the pulsation models are accurate, this suggests that there is a larger amount of convective core overshoot during the main-sequence evolution of stars with M similar to 5 M. than is usually assumed
The Edinburgh-Cape Blue Object Survey - III. Zone 2; galactic latitudes -30? > b > -40?
The Edinburgh–Cape Blue Object Survey seeks to identify point sources with an ultraviolet
excess. Results for zone 2 of the survey are presented here, covering that part of the South
Galactic Cap between 30◦ and 40◦ from the Galactic plane and south of about −12. ◦ 3 of
declination. Edinburgh–Cape zone 2 comprises 66 UK Schmidt Telescope fields covering
about 1730 deg2, in which we find some 892 blue objects, including 423 hot subdwarfs
(∼47 per cent); 128 white dwarfs (∼14 per cent); 25 cataclysmic variables (∼3 per cent); 119
binaries (∼13 per cent), mostly composed of a hot subdwarf and a main-sequence F or G star;
66 horizontal branch stars (∼7 per cent) and 48 ‘star-like’ extragalactic objects (∼5 per cent).
A further 362 stars observed in the survey, mainly low-metallicity F- and G-type stars, are also
listed. Both low-dispersion spectroscopic classification and UBV photometry are presented for
almost all of the hot objects and either spectroscopy or photometry (or both) for the cooler
ones.Department of HE and Training approved lis
NICMOS Imaging of the Nuclei of Arp 220
We report high resolution imaging of the ultraluminous infrared galaxy Arp
220 at 1.1, 1.6, and 2.22 microns with NICMOS on the HST. The
diffraction-limited images at 0.1--0.2 arcsecond resolution clearly resolve
both nuclei of the merging galaxy system and reveal for the first time a number
of luminous star clusters in the circumnuclear envelope. The morphologies of
both nuclei are strongly affected by dust obscuration, even at 2.2 microns :
the primary nucleus (west) presents a crescent shape, concave to the south and
the secondary (eastern) nucleus is bifurcated by a dust lane with the southern
component being very reddened. In the western nucleus, the morphology of the
2.2 micron emission is most likely the result of obscuration by an opaque disk
embedded within the nuclear star cluster. The morphology of the central
starburst-cluster in the western nucleus is consistent with either a
circumnuclear ring of star formation or a spherical cluster with the bottom
half obscured by the embedded dust disk. Comparison of cm-wave radio continuum
maps with the near-infrared images suggests that the radio nuclei lie in the
dust disk on the west and near the highly reddened southern component of the
eastern complex. The radio nuclei are separated by 0.98 arcseconds
(corresponding to 364 pc at 77 Mpc) and the half-widths of the infrared nuclei
are approximately 0.2-0.5 arcseconds. At least 8, unresolved infrared sources
-- probably globular clusters -- are also seen in the circumnuclear envelope at
radii 2-7 arcseconds . Their near-infrared colors do not significantly
constrain their ages.Comment: LaTex, 15 pages with 1 gif figure and 5 postscript figures. ApJL
accepte
High Mass Triple Systems: The Classical Cepheid Y Car
We have obtained an HST STIS ultraviolet high dispersion Echelle mode
spectrum the binary companion of the double mode classical Cepheid Y Car. The
velocity measured for the hot companion from this spectrum is very different
from reasonable predictions for binary motion, implying that the companion is
itself a short period binary. The measured velocity changed by 7 km/ s during
the 4 days between two segments of the observation confirming this
interpretation. We summarize "binary" Cepheids which are in fact members of
triple system and find at least 44% are triples. The summary of information on
Cepheids with orbits makes it likely that the fraction is under-estimated.Comment: accepted by A
- …