175 research outputs found

    Solid-state quantum optics with quantum dots in photonic nanostructures

    Full text link
    Quantum nanophotonics has become a new research frontier where quantum optics is combined with nanophotonics in order to enhance and control the interaction between strongly confined light and quantum emitters. Such progress provides a promising pathway towards quantum-information processing on an all-solid-state platform. Here we review recent progress on experiments with single quantum dots in nanophotonic structures. Embedding the quantum dots in photonic band-gap structures offers a way of controlling spontaneous emission of single photons to a degree that is determined by the local light-matter coupling strength. Introducing defects in photonic crystals implies new functionalities. For instance, efficient and strongly confined cavities can be constructed enabling cavity-quantum-electrodynamics experiments. Furthermore, the speed of light can be tailored in a photonic-crystal waveguide forming the basis for highly efficient single-photon sources where the photons are channeled into the slowly propagating mode of the waveguide. Finally, we will discuss some of the surprises that arise in solid-state implementations of quantum-optics experiments in comparison to their atomic counterparts. In particular, it will be shown that the celebrated point-dipole description of light-matter interaction can break down when quantum dots are coupled to plasmon nanostructures.Comment: Review. 15 pages, 9 figure

    Efficient Minimization of Decomposable Submodular Functions

    Get PDF
    Many combinatorial problems arising in machine learning can be reduced to the problem of minimizing a submodular function. Submodular functions are a natural discrete analog of convex functions, and can be minimized in strongly polynomial time. Unfortunately, state-of-the-art algorithms for general submodular minimization are intractable for larger problems. In this paper, we introduce a novel subclass of submodular minimization problems that we call decomposable. Decomposable submodular functions are those that can be represented as sums of concave functions applied to modular functions. We develop an algorithm, SLG, that can efficiently minimize decomposable submodular functions with tens of thousands of variables. Our algorithm exploits recent results in smoothed convex minimization. We apply SLG to synthetic benchmarks and a joint classification-and-segmentation task, and show that it outperforms the state-of-the-art general purpose submodular minimization algorithms by several orders of magnitude.Comment: Expanded version of paper for Neural Information Processing Systems 201

    Interfacing single photons and single quantum dots with photonic nanostructures

    Full text link
    Photonic nanostructures provide means of tailoring the interaction between light and matter and the past decade has witnessed a tremendous experimental and theoretical progress in this subject. In particular, the combination with semiconductor quantum dots has proven successful. This manuscript reviews quantum optics with excitons in single quantum dots embedded in photonic nanostructures. The ability to engineer the light-matter interaction strength in integrated photonic nanostructures enables a range of fundamental quantum-electrodynamics experiments on, e.g., spontaneous-emission control, modified Lamb shifts, and enhanced dipole-dipole interaction. Furthermore, highly efficient single-photon sources and giant photon nonlinearities may be implemented with immediate applications for photonic quantum-information processing. The review summarizes the general theoretical framework of photon emission including the role of dephasing processes, and applies it to photonic nanostructures of current interest, such as photonic-crystal cavities and waveguides, dielectric nanowires, and plasmonic waveguides. The introduced concepts are generally applicable in quantum nanophotonics and apply to a large extent also to other quantum emitters, such as molecules, nitrogen vacancy ceters, or atoms. Finally, the progress and future prospects of applications in quantum-information processing are considered.Comment: Updated version resubmitted to Reviews of Modern Physic

    Mapping the local density of optical states of a photonic crystal with single quantum dots

    Get PDF
    We use single self-assembled InGaAs quantum dots as internal probes to map the local density of optical states of photonic crystal membranes. The employed technique separates contributions from non-radiative recombination and spin-flip processes by properly accounting for the role of the exciton fine structure. We observe inhibition factors as high as 55 and compare our results to local density of optical states calculations available from the literature, thereby establishing a quantitative understanding of photon emission in photonic crystal membranes.Comment: 4 pages, 3 figure

    Unraveling the mesoscopic character of quantum dots in nanophotonics

    Full text link
    We provide a microscopic theory for semiconductor quantum dots that explains the pronounced deviations from the prevalent point-dipole description that were recently observed in spectroscopic experiments on quantum dots in photonic nanostructures. At the microscopic level the deviations originate from structural inhomogeneities generating a large circular quantum current density that flows inside the quantum dot over mesoscopic length scales. The model is supported by the experimental data, where a strong variation of the multipolar moments across the emission spectrum of quantum dots is observed. Our work enriches the physical understanding of quantum dots and is of significance for the fields of nanophotonics, quantum photonics, and quantum-information science, where quantum dots are actively employed.Comment: 6 pages, 5 figure

    Two mechanisms of disorder-induced localization in photonic-crystal waveguides

    Full text link
    Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slowlight propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parameter governing the disorder effects is the localization length, which together with the waveguide length determines the statistical transport of light through the waveguide. In a disordered photonic-crystal waveguide, the localization length is highly dispersive, and therefore, by controlling the underlying lattice parameters, it is possible to tune the localization of the mode. In the present work, we study the localization length in a disordered photonic-crystal waveguide using numerical simulations. We demonstrate two different localization regimes in the dispersion diagram where the localization length is linked to the density of states and the photon effective mass, respectively. The two different localization regimes are identified in experiments by recording the photoluminescence from quantum dots embedded in photonic-crystal waveguides.Comment: Accepted for publication in Physical Review

    Probing electric and magnetic vacuum fluctuations with quantum dots

    Full text link
    The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this paper we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.Comment: 6 pages, 4 figure

    Exciton spin-flip rate in quantum dots determined by a modified local density of optical states

    Get PDF
    The spin-flip rate that couples dark and bright excitons in self-assembled quantum dots is obtained from time-resolved spontaneous emission measurements in a modified local density of optical states. Employing this technique, we can separate effects due to non-radiative recombination and unambiguously record the spin-flip rate. The dependence of the spin-flip rate on emission energy is compared in detail to a recent model from the literature, where the spin flip is due to the combined action of short-range exchange interaction and acoustic phonons. We furthermore observe a surprising enhancement of the spin-flip rate close to a semiconductor-air interface, which illustrates the important role of interfaces for quantum dot based nanophotonic structures. Our work is an important step towards a full understanding of the complex dynamics of quantum dots in nanophotonic structures, such as photonic crystals, and dark excitons are potentially useful for long-lived coherent storage applications.Comment: 5 pages, 4 figure

    Utopisches Denken bei V. Chlebnikov

    Get PDF
    Die vorliegende Arbeit setzt sich mit dem Begriff Utopie bei dem russischen Schriftsteller Velimir Chlebnikov (1885 - 1922) auseinander. Das Thema wird allerdings nicht unter dem Aspekt der Sozialutopie, sondern unter dem Gesichtspunkt des utopischen Denkens behandelt. Hier sind vor allem die Überlegungen Chlebnikovs zur Zahl, bzw. zur Zeit als Ausdruck eines zyklischen Verlaufs der Geschichte, sowie die Versuche, eine transkulturelle Sprache ("zvesdnyj jazik", "zaum") zu schaffen im Zusammenhang mit dem Konzept des "budetljanstvo" als ein utopisches Konzept einer zukünftigen Welt von Bedeutung

    Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy

    Full text link
    We investigate the optical emission and decay dynamics of excitons confined in large strain-free GaAs quantum dots grown by droplet epitaxy. From time-resolved measurements combined with a theoretical model we show that droplet-epitaxy quantum dots have a quantum efficiency of about 75% and an oscillator strength between 8 and 10. The quantum dots are found to be fully described by a model for strongly-confined excitons, in contrast to the theoretical prediction that excitons in large quantum dots exhibit the so-called giant oscillator strength. We attribute these findings to localized ground-state excitons in potential minima created by material intermixing during growth. We provide further evidence for the strong-confinement regime of excitons by extracting the size of electron and hole wavefunctions from the phonon-broadened photoluminescence spectra. Furthermore, we explore the temperature dependence of the decay dynamics and, for some quantum dots, observe a pronounced reduction in the effective transition strength with temperature. We quantify and explain these effects as being an intrinsic property of large quantum dots owing to thermal excitation of the ground-state exciton. Our results provide a detailed understanding of the optical properties of large quantum dots in general, and of quantum dots grown by droplet epitaxy in particular.Comment: 13 pages, 7 figure
    corecore