2 research outputs found

    Pharmacological characterization of the orexin/hypocretin receptor agonist Nag 26

    Get PDF
    One promising series of small-molecule orexin receptor agonists has been described, but the molecular pharmacological properties, i.e. ability and potency to activate the different orexin receptor-regulated signal pathways have not been reported for any of these ligands. We have thus here assessed these properties for the most potent ligand of the series, 4'-methoxy-N,N-dimethyl-3'4N-(3-{[2-(3-methylbenzamido)ethyl]amino}phenyl sulfamoy1]-(1,1'-biphenyl)-3-carboxamide (Nag 26). Chinese hamster ovary-K1 cells expressing human orexin receptor subtypes OX1 and OX2 were used. Ca2+ elevation and cell viability and death were assessed by fluorescent methods, the extracellular signal-regulated kinase pathway by a luminescent Elk-1 reporter assay, and phospholipase C and adenylyl cyclase activities by radioactive methods. The data suggest that for the G(q)-dependent responses, Ca2+, phospholipase C and Elk-1, Nag 26 is a full agonist for both receptors, though of much lower potency. However, saturation was not always reached for OX1, partially due to Nag 26s low solubility and partially because the response decreased at high concentrations. The latter occurs in the same range as some reduction of cell viability, which is independent of orexin receptors. Based on the EC50, Nag 26 was OX2 selective by 20-200 fold in different assays, with some indication of biased agonism (as compared to orexin-A). Nag 26 is a potent orexin receptor agonist with a largely similar pharmacological profile as orexin-A. However, its weaker potency (low-mid micromolar) and low water solubility as well as the non-specific effect in the mid-micromolar range may limit its usefulness under physiological conditions.Peer reviewe

    Azulene as a biphenyl mimetic in orexin/hypocretin receptor agonists

    No full text
    Azulene is a rare ring structure in drugs, and we investigated whether it could be used as a biphenyl mimetic in known orexin receptor agonist Nag 26, which is binding to both orexin receptors OX1 and OX2 with preference towards OX2. The most potent azulene-based compound was identified as an OX1 orexin receptor agonist (pEC50 = 5.79 +/- 0.07, maximum response = 81 +/- 8% (s.e.m. of five independent experiments) of the maximum response to orexin-A in Ca2+ elevation assay). However, the azulene ring and the biphenyl scaffold are not identical in their spatial shape and electron distribution, and their derivatives may adopt different binding modes in the binding site.Peer reviewe
    corecore