4 research outputs found
Recommended from our members
Catching Element Formation In The Act
Gamma-ray astronomy explores the most energetic photons in nature to address
some of the most pressing puzzles in contemporary astrophysics. It encompasses
a wide range of objects and phenomena: stars, supernovae, novae, neutron stars,
stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays
and relativistic-particle acceleration, and the evolution of galaxies. MeV
gamma-rays provide a unique probe of nuclear processes in astronomy, directly
measuring radioactive decay, nuclear de-excitation, and positron annihilation.
The substantial information carried by gamma-ray photons allows us to see
deeper into these objects, the bulk of the power is often emitted at gamma-ray
energies, and radioactivity provides a natural physical clock that adds unique
information. New science will be driven by time-domain population studies at
gamma-ray energies. This science is enabled by next-generation gamma-ray
instruments with one to two orders of magnitude better sensitivity, larger sky
coverage, and faster cadence than all previous gamma-ray instruments. This
transformative capability permits: (a) the accurate identification of the
gamma-ray emitting objects and correlations with observations taken at other
wavelengths and with other messengers; (b) construction of new gamma-ray maps
of the Milky Way and other nearby galaxies where extended regions are
distinguished from point sources; and (c) considerable serendipitous science of
scarce events -- nearby neutron star mergers, for example. Advances in
technology push the performance of new gamma-ray instruments to address a wide
set of astrophysical questions
Catching Element Formation In The Act
Gamma-ray astronomy explores the most energetic photons in nature to address
some of the most pressing puzzles in contemporary astrophysics. It encompasses
a wide range of objects and phenomena: stars, supernovae, novae, neutron stars,
stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays
and relativistic-particle acceleration, and the evolution of galaxies. MeV
gamma-rays provide a unique probe of nuclear processes in astronomy, directly
measuring radioactive decay, nuclear de-excitation, and positron annihilation.
The substantial information carried by gamma-ray photons allows us to see
deeper into these objects, the bulk of the power is often emitted at gamma-ray
energies, and radioactivity provides a natural physical clock that adds unique
information. New science will be driven by time-domain population studies at
gamma-ray energies. This science is enabled by next-generation gamma-ray
instruments with one to two orders of magnitude better sensitivity, larger sky
coverage, and faster cadence than all previous gamma-ray instruments. This
transformative capability permits: (a) the accurate identification of the
gamma-ray emitting objects and correlations with observations taken at other
wavelengths and with other messengers; (b) construction of new gamma-ray maps
of the Milky Way and other nearby galaxies where extended regions are
distinguished from point sources; and (c) considerable serendipitous science of
scarce events -- nearby neutron star mergers, for example. Advances in
technology push the performance of new gamma-ray instruments to address a wide
set of astrophysical questions.Comment: 14 pages including 3 figure
Catching element formation in the act
Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions
Recommended from our members
Catching Element Formation In The Act
Gamma-ray astronomy explores the most energetic photons in nature to address
some of the most pressing puzzles in contemporary astrophysics. It encompasses
a wide range of objects and phenomena: stars, supernovae, novae, neutron stars,
stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays
and relativistic-particle acceleration, and the evolution of galaxies. MeV
gamma-rays provide a unique probe of nuclear processes in astronomy, directly
measuring radioactive decay, nuclear de-excitation, and positron annihilation.
The substantial information carried by gamma-ray photons allows us to see
deeper into these objects, the bulk of the power is often emitted at gamma-ray
energies, and radioactivity provides a natural physical clock that adds unique
information. New science will be driven by time-domain population studies at
gamma-ray energies. This science is enabled by next-generation gamma-ray
instruments with one to two orders of magnitude better sensitivity, larger sky
coverage, and faster cadence than all previous gamma-ray instruments. This
transformative capability permits: (a) the accurate identification of the
gamma-ray emitting objects and correlations with observations taken at other
wavelengths and with other messengers; (b) construction of new gamma-ray maps
of the Milky Way and other nearby galaxies where extended regions are
distinguished from point sources; and (c) considerable serendipitous science of
scarce events -- nearby neutron star mergers, for example. Advances in
technology push the performance of new gamma-ray instruments to address a wide
set of astrophysical questions