3,627 research outputs found

    Laser-induced topological transitions in phosphorene with inversion symmetry

    Get PDF
    Recent ab initio calculations and experiments reported insulating-semimetallic phase transitions in multilayer phosphorene under a perpendicular dc field, pressure or doping, as a possible route to realize topological phases. In this work, we show that even a monolayer phosphorene may undergo Lifshitz transitions toward semimetallic and topological insulating phases, provided it is rapidly driven by in-plane time-periodic laser fields. Based on a four-orbital tight-binding description, we give an inversion-symmetry-based prescription in order to apprehend the topology of the photon-renormalized band structure, up to the second order in the high-frequency limit. Apart from the initial band insulating behavior, two additional phases are thus identified. A semimetallic phase with massless Dirac electrons may be induced by linear polarized fields, whereas elliptic polarized fields are likely to drive the material into an anomalous quantum Hall phase.Comment: Includes Supplemental Materia
    • …
    corecore