206 research outputs found

    Using GIS to identify critical areas for water quality protection in New York City\u27s water supply system

    Full text link
    The protection of water quality at its source — the watershed — recognizes that minimizing land use impacts and allowing natural processes to provide in situ biological treatment can complement conventional engineering methods. In contrast to the enormous costs projected for drinking water filtration, the judicious application of watershed management principles and practices is a way to balance the needs of people with the capacity of the natural resource base over time. This paper describes the development and initial application of a geographic information system (GIS) to a ortion of New York City\u27s 2,000 square mile water supply system, the Esopus Creek watershed in the Catskill Mountains. Primary GIS layers depict topography, soils, vegetative cover, and land use. Secondary and derivative layers help to identify the primary streamflow and sediment source areas within the watershed. Although this method is a static representation of the landscape, it can serve as a guide to field inspections and related research to prioritize land for a conservation easement or protection program or to locate unstable areas in urgent need of restoration. Subsequent research includes the influence of contributing area, flow path, and soil properties on the travel time of subsurface flow

    Report on Second Activations with the Lead Slowing Down Spectrometer

    Get PDF
    Summary On August 18 and 19 2011, five items were irradiated with neutrons using the Lead Slowing Down Spectrometer (LSDS). After irradiation, dose measurements and gamma-spectrometry measurements were completed on all of the samples. No contamination was found on the samples, and all but one provided no dose. Gamma-spectroscopy measurements qualitatively agreed with expectations based on the materials. As during the first activation run, we observed activation in the room in general, mostly due to 56Mn and 24Na. Most of the activation of the samples was short lived, with half-lives on the scale of hours to days, except for 60Co which has a half-life of 5.3 y

    What are System Dynamics Insights?

    Get PDF
    This paper explores the concept of system dynamics insights. In our field, the term “insight” is generally understood to mean dynamic insight, that is, a deep understanding about the relationship between structure and behavior. We argue this is only one aspect of the range of insights possible from system dynamics activities, and describe a broader range of potential system dynamics insights. We also propose an initial framework for discussion that relates different types of system dynamics activities with different types of insights

    Report on First Activations with the Lead Slowing Down Spectrometer

    Get PDF
    On Feb. 17 and 18 2011, six items were irradiated with neutrons using the Lead Slowing Down Spectrometer. After irradiation, dose measurements and gamma-spectrometry measurements were completed on all of the samples. No contamination was found on the samples, and all but one provided no dose. Gamma-spectroscopy measurements qualitatively agreed with expectations based on the materials, with the exception of silver. We observed activation in the room in general, mostly due to 56Mn and 24Na. Most of the activation was short lived, with half-lives on the scale of hours, except for 198Au which has a half-life of 2.7 d

    Farmers’ knowledge of the banana (Musa Sp.) agroforestry systems in Kiboga District, Central Uganda

    Get PDF
    Banana is a major food and cash crop in Uganda, particularly in the central and southwestern regions. However, production is still below attainable yields and at the same time declining due to a number of reasons, with low soil fertility being paramount. Few farmers use inorganic fertilizers, with majority of them relying mainly on organic supplements including integration of trees/shrubs. However, trees and shrubs exist on banana farms in undefined numbers and composition, with no spacing and canopy management recommendations. Also, there is limited information on farmers’ knowledge on these systems. A survey was, therefore, conducted on 70 randomly selected farms in Kiboga district, central Uganda to assess farmers’ knowledge of, as well as identify trees and shrubs species and banana cultivars in their agro-ecologies. A total of 1,558 trees and shrubs belonging to 40 species and 21 families were recorded in the study area (52 trees/shrubs per banana plantation). These were dominated by Jackfruit, Artocarpus heterophyllus (15%), Natal fig, Ficus natalensis (10%), Albizia, Albizia coriaria (10%) and mango, Mangifera indica (9%). Further, 1,779 banana mats belonging to nine (9) cultivars and three (3) genome groups were observed growing underneath these four commonest tree species (2.6 banana mats per tree). The highest number of banana mats was observed growing underneath F. natalensis (54%) and A. coriaria (42%). Most (87%) observed banana cultivars belonged to the cooking East African Highland Banana (Musa AAA-EAHB) and dominated by Ndibwabalangira (21%). Farmers reported 25 benefits they derive from banana-trees/shrubs integration; with shade and firewood (38%), as well as income and timber (35%) being the main benefits reported. They also reported that the highest percentage of benefits was derived from F. natalensis (44%) and A. coriaria (32%). Of the four (4) most prevalent tree species, A. coriaria (100%) and F. natalensis (96%) were reported as good companion plant to bananas, whereas, A. heterophyllus (99%) and M. indica (97%) were regarded as bad companion plants. Farmers preferred a tree that allows light penetration (96%), is compatible with bananas and other crops (87%) and has easily decomposable leaves (83%). Therefore, F. natalensis and A. coriaria should be integrated in banana agrosystems for soil fertility improvement whereas; A. heterophyllus and M. indica be planted on farm boundaries. However, the best-bet spacing and pruning regimes for these trees should be determined to minimize the negative attributes as much as possible.Keywords: Albizia coriaria, Artocarpus heterophyllus, banana cultivars, benefits, companions, Ficus natalensis, Mangifera indica, tree-specie

    New Measurement of Compton Scattering from the Deuteron and an Improved Extraction of the Neutron Electromagnetic Polarizabilities

    Get PDF
    The electromagnetic polarizabilities of the nucleon are fundamental properties that describe its response to external electric and magnetic fields. They can be extracted from Compton-scattering data --- and have been, with good accuracy, in the case of the proton. In contradistinction, information for the neutron requires the use of Compton scattering from nuclear targets. Here we report a new measurement of elastic photon scattering from deuterium using quasimonoenergetic tagged photons at the MAX IV Laboratory in Lund, Sweden. These first new data in more than a decade effectively double the world dataset. Their energy range overlaps with previous experiments and extends it by 20 MeV to higher energies. An analysis using Chiral Effective Field Theory with dynamical \Delta(1232) degrees of freedom shows the data are consistent with and within the world dataset. After demonstrating that the fit is consistent with the Baldin sum rule, extracting values for the isoscalar nucleon polarizabilities and combining them with a recent result for the proton, we obtain the neutron polarizabilities as \alpha_n = [11.55 +/- 1.25(stat) +/- 0.2(BSR) +/- 0.8(th)] X 10^{-4} fm^3 and \beta_n = [3.65 -/+ 1.25(stat) +/- 0.2(BSR) -/+ 0.8(th)] X 10^{-4} fm3, with \chi^2 = 45.2 for 44 degrees of freedom.Comment: 6 pages, 3 figures, comments from Physical Review Letters Referees addresse

    An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS

    Full text link
    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm^3. Ionization electrons drift towards a double parallel grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIgS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program, ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103

    Chiral Dynamics in Photo-Pion Physics: Theory, Experiment, and Future Studies at the HIÎł\gammaS Facility

    Full text link
    A review of photo-pion experiments on the nucleon in the near threshold region is presented. Comparisons of the results are made with the predictions of the low energy theorems of QCD calculated using chiral perturbation theory (ChPT) which is based on the spontaneous breaking of chiral symmetry as well as its explicit breaking due to the finite quark masses. As a result of the vanishing of the threshold amplitudes in the chiral limit, the experiments are difficult since the cross sections are small. Nevertheless the field has been brought to a mature stage of accuracy and sensitivity. The accomplishments and limitations of past experiments are discussed. Future planned experiments at Mainz and HIÎł\gammaS using polarization observables are discussed as a more rigorous test of theoretical calculations. Emphasis is given to the technical developments that are required for the HIÎł\gammaS facility. It is shown that future experiments will provide more accurate tests of ChPT and will be sensitive to isospin breaking dynamics due to the mass difference of the up and down quarks.Comment: 61 pages, 10 figures, 2 table

    Unambiguous Identification of the Second 2+ State in 12C and the Structure of the Hoyle State

    Full text link
    The second 2+ state of 12C, predicted over fifty years ago as an excitation of the Hoyle state, has been unambiguously identified using the 12C(g,a_0)8Be reaction. The alpha particles produced by the photodisintegration of 12C were detected using an Optical Time Projection Chamber (O-TPC). Data were collected at beam energies between 9.1 and 10.7 MeV using the intense nearly mono-energetic gamma-ray beams at the HIgS facility. The measured angular distributions determine the cross section and the E1-E2 relative phases as a function of energy leading to an unambiguous identification of the second 2+ state in 12C at 10.03(11) MeV, with a total width of 800(130) keV and a ground state gamma-decay width of 60(10) meV; B(E2: 2+ ---> gs) = 0.73(13) e2fm4 [or 0.45(8) W.u.]. The Hoyle state and its rotational 2+ state that are more extended than the ground state of 12C presents a challenge and constraints for models attempting to reveal the nature of three alpha particle states in 12C. Specifically it challenges the ab-initio Lattice Effective Field Theory (L-EFT) calculations that predict similar r.m.s. radii for the ground state and the Hoyle state.Comment: Accepted for Publication in the Physical Review Lette
    • …
    corecore