4 research outputs found

    Regio- and Stereoselective 1,3-Dipolar Cycloaddition of Cyclic Azomethine Imines to Platinum(IV)-Bound Nitriles Giving Ī”<sup>2</sup>ā€‘1,2,4-Triazoline Species

    No full text
    The complex <i>trans-</i>[PtCl<sub>4</sub>(EtCN)<sub>2</sub>] (<b>14</b>) reacts smoothly at 25 Ā°C with the stable cyclic azomethine imines R<sup>1</sup>CHī—»N<sup><i>a</i></sup>NCĀ­(O)Ā­CHĀ­(NHCĀ­(O)Ā­C<sub>6</sub>H<sub>4</sub>R<sup>3</sup>)Ā­C<sup><i>b</i></sup>HĀ­(C<sub>6</sub>H<sub>4</sub>R<sup>2</sup>)<sup>(<i>a</i>āˆ’<i>b</i>)</sup> [R<sup>1</sup>/R<sup>2</sup>/R<sup>3</sup> = <i>p-</i>Me/H/H (<b>8</b>); <i>p-</i>Me/<i>p-</i>Me/H (<b>9</b>); <i>p-</i>Me/<i>p-</i>MeO/H (<b>10</b>); <i>p-</i>Me/<i>p-</i>Cl/<i>p-</i>Cl (<b>11</b>); <i>p-</i>MeO/<i>p-</i>Me/H (<b>12</b>); <i>p-</i>MeO/<i>p-</i>Cl/<i>m-</i>Me (<b>13</b>)], and the reaction proceeds as stereoselective 1,3-dipolar cycloaddition to one of the EtCN ligands accomplishing the <i>mono</i>cycloadducts <i>trans-</i>[PtCl<sub>4</sub>(EtCN)Ā­{N<sup><i>a</i></sup>ī—»CĀ­(Et)Ā­<i>N</i><sup><i>b</i></sup>CĀ­(O)Ā­CHĀ­(NHCĀ­(O)Ā­C<sub>6</sub>H<sub>4</sub>R<sup>3</sup>)Ā­CHĀ­(C<sub>6</sub>H<sub>4</sub>R<sup>2</sup>)Ā­<i>N</i><sup><i>c</i></sup>C<sup><i>d</i></sup>HR<sup>1</sup>}])<sup>(<i>aā€“d;bā€“c</i>)</sup> [R<sup>1</sup>/R<sup>2</sup>/R<sup>3</sup> = <i>p-</i>Me/H/H (<b>15</b>); <i>p-</i>Me/<i>p-</i>Me/H (<b>16</b>); <i>p-</i>Me/<i>p-</i>MeO/H (<b>17</b>); <i>p-</i>Me/<i>p-</i>Cl/<i>p-</i>Cl (<b>18</b>); <i>p-</i>MeO/<i>p-</i>Me/H (<b>19</b>); <i>p-</i>MeO/<i>p-</i>Cl/<i>m-</i>Me (<b>20</b>)]. Inspection of the obtained and literature data indicate that the cycloaddition of the azomethine imines to the Cā‰”N bonds of HCN and of Pt<sup>IV</sup>-bound EtCN has different regioselectivity leading to Ī”<sup>2</sup>-1,2,3-triazolines and Ī”<sup>2</sup>-1,2,4-triazolines, respectively. PlatinumĀ­(II) species <i>trans-</i>[PtCl<sub>2</sub>(EtCN)Ā­{N<sup><i>a</i></sup>ī—»CĀ­(Et)Ā­<i>N</i><sup><i>b</i></sup>CĀ­(O)Ā­CHĀ­(NHCĀ­(O)Ā­C<sub>6</sub>H<sub>4</sub>R<sup>3</sup>)Ā­CHĀ­(C<sub>6</sub>H<sub>4</sub>R<sup>2</sup>)Ā­<i>N</i><sup><i>c</i></sup>C<sup><i>d</i></sup>HR<sup>1</sup>}]<sup>(<i>aā€“d;bā€“c</i>)</sup> [R<sup>1</sup>/R<sup>2</sup>/R<sup>3</sup> = <i>p-</i>Me/H/H (<b>21</b>); <i>p-</i>Me/<i>p-</i>Me/H (<b>22</b>); <i>p-</i>Me/<i>p-</i>MeO/H (<b>23</b>); <i>p-</i>Me/<i>p-</i>Cl/<i>p-</i>Cl (<b>24</b>); <i>p-</i>MeO/<i>p-</i>Me/H (<b>25</b>); <i>p-</i>MeO/<i>p-</i>Cl/<i>m-</i>Me (<b>26</b>)] were obtained by a one-pot procedure from <b>14</b> and <b>8</b>ā€“<b>13</b> followed by addition of the phosphorus ylide Ph<sub>3</sub>Pī—»CHCO<sub>2</sub>Me. Ī”<sup>2</sup>-1,2,4-Triazolines N<sup><i>a</i></sup>ī—»CĀ­(Et)<i>Ā­N</i><sup><i>b</i></sup>CĀ­(O)Ā­CHĀ­(NHCĀ­(O)Ā­C<sub>6</sub>H<sub>4</sub>R<sup>3</sup>)Ā­CHĀ­(C<sub>6</sub>H<sub>4</sub>R<sup>2</sup>)Ā­<i>N</i><sup><i>c</i></sup>C<sup><i>d</i></sup>HR<sup>1(<i>aā€“d;bā€“c</i>)</sup> [R<sup>1</sup>/R<sup>2</sup>/R<sup>3</sup> = <i>p-</i>Me/H/H (<b>27</b>); <i>p-</i>Me/<i>p-</i>Me/H (<b>28</b>); <i>p-</i>Me/<i>p-</i>MeO/H (<b>29</b>); <i>p-</i>Me/<i>p-</i>Cl/<i>p-</i>Cl (<b>30</b>); <i>p-</i>MeO/<i>p-</i>Me/H (<b>31</b>); <i>p-</i>MeO/<i>p-</i>Cl/<i>m-</i>Me (<b>32</b>)] were liberated from <b>21</b>ā€“<b>26</b> by the treatment with bisĀ­(diphenylphosphyno)Ā­ethane (dppe). PlatinumĀ­(II) complexes <b>21</b>ā€“<b>26</b> were characterized by elemental analyses (C, H, N), high-resolution electrospray ionization mass spectrometry (ESI-MS), and IR and <sup>1</sup>H and <sup>13</sup>CĀ­{<sup>1</sup>H} NMR spectroscopies and single crystal X-ray diffraction in the solid state for <b>25</b>Ā·CH<sub>3</sub>OH, <b>26</b>Ā·(CHCl<sub>3</sub>)<sub>0.84</sub>. The structure of <b>26</b> was also determined by COSY-90 and NOESY NMR methods in solution. Quantitative evaluation of several pairs of interproton distances obtained by NMR and X-ray diffraction agrees well with each other and with those obtained by the MM+ calculation method. PlatinumĀ­(IV) complexes <b>15</b>ā€“<b>20</b> were characterized by <sup>1</sup>H NMR spectroscopy. Metal-free 6,7-dihydropyrazoloĀ­[1,2-<i>a</i>]Ā­[1,2,4]Ā­triazoles (<b>27</b>ā€“<b>32</b>) were characterized by high-resolution ESI-MS and IR and <sup>1</sup>H and <sup>13</sup>CĀ­{<sup>1</sup>H} NMR spectroscopies and single crystal X-ray diffraction for <b>29</b>Ā·CDCl<sub>3</sub>. Theoretical density functional theory calculations were carried out for the investigation of the reaction mechanism, interpretation of the reactivity of Pt-bound and free nitriles toward azomethine imines and analysis of the regio- and stereoselectivity origin

    Intensely Luminescent Homoleptic Alkynyl Decanuclear Gold(I) Clusters and Their Cationic Octanuclear Phosphine Derivatives

    No full text
    Treatment of AuĀ­(SC<sub>4</sub>H<sub>8</sub>)Cl with a stoichiometric amount of hydroxyaliphatic alkyne in the presence of NEt<sub>3</sub> results in high-yield self-assembly of homoleptic clusters (AuC<sub>2</sub>R)<sub>10</sub> (R = 9-fluorenol (<b>1</b>), diphenylmethanol (<b>2</b>), 2,6-dimethyl-4-heptanol (<b>3</b>), 3-methyl-2-butanol (<b>4</b>), 4-methyl-2-pentanol (<b>4</b>), 1-cyclohexanol (<b>6</b>), 2-borneol (<b>7</b>)). The molecular compounds contain an unprecedented catenane metal core with two interlocked 5-membered rings. Reactions of the decanuclear clusters <b>1</b>ā€“<b>7</b> with goldā€“diphosphine complex [Au<sub>2</sub>(1,4-PPh<sub>2</sub>ā€“C<sub>6</sub>H<sub>4</sub>ā€“PPh<sub>2</sub>)<sub>2</sub>]<sup>2+</sup> lead to octanuclear cationic derivatives [Au<sub>8</sub>(C<sub>2</sub>R)<sub>6</sub>(PPh<sub>2</sub>ā€“C<sub>6</sub>H<sub>4</sub>ā€“PPh<sub>2</sub>)<sub>2</sub>]<sup>2+</sup> (<b>8</b>ā€“<b>14</b>), which consist of planar tetranuclear units {Au<sub>4</sub>(C<sub>2</sub>R)<sub>4</sub>} coupled with two fragments [AuPPh<sub>2</sub>ā€“C<sub>6</sub>H<sub>4</sub>ā€“PPh<sub>2</sub>(AuC<sub>2</sub>R)]<sup>+</sup>. The titled complexes were characterized by NMR and ESI-MS spectroscopy, and the structures of <b>1</b>, <b>13</b>, and <b>14</b> were determined by single-crystal X-ray diffraction analysis. The luminescence behavior of both Au<sup>I</sup><sub>10</sub> and Au<sup>I</sup><sub>8</sub> families has been studied, revealing efficient room-temperature phosphorescence in solution and in the solid state, with the maximum quantum yield approaching 100% (<b>2</b> in solution). DFT computational studies showed that in both Au<sup>I</sup><sub>10</sub> and Au<sup>I</sup><sub>8</sub> clusters metal-centered Au ā†’ Au charge transfer transitions mixed with some Ļ€-alkynyl MLCT character play a dominant role in the observed phosphorescence

    Sky-Blue Luminescent Au<sup>I</sup>ā€“Ag<sup>I</sup> Alkynyl-Phosphine Clusters

    No full text
    Treatment of the (AuC<sub>2</sub>R)<sub><i>n</i></sub> acetylides with phosphine ligand 1,4-bisĀ­(diphenylphosphino)Ā­butane (PbuP) and Ag<sup>+</sup> ions results in self-assembly of the heterobimetallic clusters of three structural types depending on the nature of the alkynyl group. The hexadecanuclear complex [Au<sub>12</sub>Ag<sub>4</sub>(C<sub>2</sub>R)<sub>12</sub>(PbuP)<sub>6</sub>]<sup>4+</sup> (<b>1</b>) is formed for R = Ph, and the octanuclear species [Au<sub>6</sub>Ag<sub>2</sub>(C<sub>2</sub>R)<sub>6</sub>(PbuP)<sub>3</sub>]<sup>2+</sup> adopting two structural arrangements in the solid state were found for the aliphatic alkynes (R = Bu<sup>t</sup> (<b>2</b>), 2-propanolyl (<b>3</b>), 1-cyclohexanolyl (<b>4</b>), diphenylmethanolyl (<b>5</b>), 2-borneolyl (<b>6</b>)). The structures of the compounds <b>1</b>ā€“<b>4</b> and <b>6</b> were determined by single crystal X-ray diffraction analysis. The NMR spectroscopic studies revealed complicated dynamic behavior of <b>1</b>ā€“<b>3</b> in solution. In particular, complexes <b>2</b> and <b>3</b> undergo reversible transformation, which involves slow interconversion of two isomeric forms. The luminescence behavior of the titled clusters has been studied. All the compounds exhibit efficient sky-blue room-temperature phosphorescence both in solution and in the solid state with maximum quantum yield of 76%. The theoretical DFT calculations of the electronic structures demonstrated the difference in photophysical properties of the compounds depending on their structural topology

    Sky-Blue Luminescent Au<sup>I</sup>ā€“Ag<sup>I</sup> Alkynyl-Phosphine Clusters

    No full text
    Treatment of the (AuC<sub>2</sub>R)<sub><i>n</i></sub> acetylides with phosphine ligand 1,4-bisĀ­(diphenylphosphino)Ā­butane (PbuP) and Ag<sup>+</sup> ions results in self-assembly of the heterobimetallic clusters of three structural types depending on the nature of the alkynyl group. The hexadecanuclear complex [Au<sub>12</sub>Ag<sub>4</sub>(C<sub>2</sub>R)<sub>12</sub>(PbuP)<sub>6</sub>]<sup>4+</sup> (<b>1</b>) is formed for R = Ph, and the octanuclear species [Au<sub>6</sub>Ag<sub>2</sub>(C<sub>2</sub>R)<sub>6</sub>(PbuP)<sub>3</sub>]<sup>2+</sup> adopting two structural arrangements in the solid state were found for the aliphatic alkynes (R = Bu<sup>t</sup> (<b>2</b>), 2-propanolyl (<b>3</b>), 1-cyclohexanolyl (<b>4</b>), diphenylmethanolyl (<b>5</b>), 2-borneolyl (<b>6</b>)). The structures of the compounds <b>1</b>ā€“<b>4</b> and <b>6</b> were determined by single crystal X-ray diffraction analysis. The NMR spectroscopic studies revealed complicated dynamic behavior of <b>1</b>ā€“<b>3</b> in solution. In particular, complexes <b>2</b> and <b>3</b> undergo reversible transformation, which involves slow interconversion of two isomeric forms. The luminescence behavior of the titled clusters has been studied. All the compounds exhibit efficient sky-blue room-temperature phosphorescence both in solution and in the solid state with maximum quantum yield of 76%. The theoretical DFT calculations of the electronic structures demonstrated the difference in photophysical properties of the compounds depending on their structural topology
    corecore