21 research outputs found

    Yaws: 110 Years After Castellani's Discovery of Treponema pallidum subspecies pertenue

    Get PDF
    Yaws is a neglected infectious disease that affects mostly children and adolescents living in poor, rural communities in humid, tropical areas of Africa, southeast Asia, and the Pacific Islands. The etiological agent of yaws, Treponema pallidum subspecies pertenue (T. pertenue), was discovered by Aldo Castellani in 1905 shortly after Schaudinn and Hoffmann discovered the etiological agent of syphilis, T. pallidum subspecies pallidum. The discovery of T. pertenue enabled the development of animal models and the identification of an effective antibiotic treatment (i.e., penicillin) for yaws. A World Health Organization (WHO) mass treatment campaign from 1952 to 1964 reduced the global burden of yaws by 95%, but failed to eradicate this disease. Today, 110 years after Castellani's discovery of T. pertenue, yaws is again targeted for eradication. Recent advances in the treatment and diagnosis of yaws improve the likelihood of success this time. However, several challenges must be overcome to make the goal of yaws eradication attainable

    Ebola Virus Disease: Rapid Diagnosis and Timely Case Reporting are Critical to the Early Response for Outbreak Control

    Get PDF
    Ebola virus disease (EVD) is a life-threatening zoonosis caused by infection with the Ebola virus. Since the first reported EVD outbreak in the Democratic Republic of the Congo, several small outbreaks have been reported in central Africa with about 2,400 cases occurring between 1976 and 2013. The 2013–2015 EVD outbreak in west Africa is the first documented outbreak in this region and the largest ever with over 27,000 cases and more than 11,000 deaths. Although EVD transmission rates have recently decreased in west Africa, this crisis continues to threaten global health and security, particularly since infected travelers could spread EVD to other resource-limited areas of the world. Because vaccines and drugs are not yet licensed for EVD, outbreak control is dependent on the use of non-pharmaceutical interventions (e.g., infection control practices, isolation of EVD cases, contact tracing with follow-up and quarantine, sanitary burial, health education). However, delays in diagnosing and reporting EVD cases in less accessible rural areas continue to hamper control efforts. New advances in rapid diagnostics for identifying presumptive EVD cases and in mobile-based technologies for communicating critical health-related information should facilitate deployment of an early response to prevent the amplification of sporadic EVD cases into large-scale outbreaks

    Pinta: Latin America's Forgotten Disease?

    Get PDF
    Abstract Pinta is a neglected, chronic skin disease that was first described in the sixteenth century in Mexico. The World Health Organization lists 15 countries in Latin America where pinta was previously endemic. However, the current prevalence of pinta is unknown due to the lack of surveillance data. The etiological agent of pinta, Treponema carateum, cannot be distinguished morphologically or serologically from the not-yet-cultivable Treponema pallidum subspecies that cause venereal syphilis, yaws, and bejel. Although genomic sequencing has enabled the development of molecular techniques to differentiate the T. pallidum subspecies, comparable information is not available for T. carateum. Because of the influx of migrants and refugees from Latin America, U.S. physicians should consider pinta in the differential diagnosis of skin diseases in children and adolescents who come from areas where pinta was previously endemic and have a positive reaction in serological tests for syphilis. All stages of pinta are treatable with a single intramuscular injection of penicillin

    Molecular Characterization of Treponema pallidum mcp2, a Putative Chemotaxis Protein Gene

    Get PDF
    The nucleotide sequence of the Treponema pallidum mcp2 gene was determined. mcp2 encodes a 45.8-kDa protein whose deduced amino acid sequence has significant homology with the C-terminal region of bacterial methyl-accepting chemotaxis proteins (MCPs). The Mcp2 N terminus lacks the hydrophobic transmembrane regions present in most MCPs. An Mcp2 fusion protein was strongly reactive with antibody (HC23) to the highly conserved domain of MCPs and with rabbit syphilitic serum. Antibody HC23 reacted with six T. pallidum proteins, including a 45-kDa protein that may correspond to Mcp2. This protein was present in the aqueous phase from T. pallidum cells that were solubilized with Triton X-114 and phase partitioned

    TLR2 and TLR4 mediate the TNFα response to Vibrio vulnificus biotype 1

    Get PDF
    Vibrio vulnificus (Vv) is a pathogenic bacterium that can cause life-threatening infections in humans. Most fatal cases are due to septic shock that results from dysregulation of cytokines, particularly TNFα, which plays a critical role in the outcome of Vv infection. The goal of this study was to investigate the Toll-like receptor (TLR)-mediated TNFα response to four Vv biotype 1 strains using mice deficient for TLR2, TLR4 and TLR2/TLR4. Ex vivo assays were performed with blood, splenocytes, and Kupffer cells (KC) from wild type (WT) and TLR knockout (KO) mice using formalin-inactivated Vv (f-Vv) as stimulant. All f-Vv biotype 1 strains elicited strong TNFα production by WT mouse blood and cells, which was TLR2- and TLR4-dependent. OxPAPC, an inhibitor of TLR2 and TLR4 signaling, effectively blunted the TLR-mediated TNFα response to f-Vv. Furthermore, TLR2 KO and TLR2/TLR4 KO mice were more resistant to lethal infection with Vv ATCC 27562 than WT mice, perhaps due to attenuation of the TNFα response. These data suggest that it may be possible to devise strategies to specifically target the harmful TLR-mediated TNFα response as an adjunct to antibiotic treatment of severe Vv infection

    Changes in the cell surface properties of Treponema pallidum that occur during in vitro incubation of freshly extracted organisms.

    Get PDF
    We previously reported that a number of Treponema pallidum membrane proteins appear to reside on the cell surface, since intact treponemes radiolabeled by overnight incubation in medium containing [35S]methionine bind immunoglobulin G (IgG) antibodies directed against these proteins. In the present study, it was found that freshly extracted organisms radiolabeled in vitro for only 2 h inefficiently bound IgG antibodies directed against just two proteins of molecular weights 40,000 and 34,000. An in vitro incubation period of greater than 8 h was required before IgG antibodies present in rabbit syphilitic serum could recognize additional protein antigens on the cell surface. Treatment of aged treponemes, but not freshly extracted organisms, with 0.04% sodium dodecyl sulfate selectively removed a membranous layer from the treponemal surface. Only three treponemal proteins were found associated with this structure, including the same 40,000- and 34,000-molecular-weight proteins mentioned above. These two proteins most likely represent endoflagellar subunits, since they were precipitated with rabbit antisera prepared against purified endoflagellar subunits of the cultivable treponemal strain Treponema phagedenis. Further evidence also was obtained that cells of T. pallidum actively secrete into their extracellular environment a unique class of low-molecular-weight proteins

    Identification and characterization of the protein antigens of Leptospira interrogans serovar hardjo.

    Get PDF
    We radiolabeled Leptospira proteins with [35S]methionine. Solubilized extracts of radiolabeled L. interrogans serovar hardjo strain hardjoprajitno were analyzed by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. We compared the protein profile obtained in this manner to the protein profiles of various [35S]methionine-labeled Leptospira spp. The profiles of the pathogenic L. interrogans strains were very similar but not identical and exhibited no obvious relationship to those of the two nonpathogenic species. We used solubilized, radiolabeled hardjoprajitno extracts and a sensitive radioimmunoprecipitation procedure to identify protein antigens recognized by immunoglobulin G antibodies present in various rabbit anti-hardjo sera. Homologous hyperimmune rabbit serum efficiently precipitated a large subset of proteins, the majority of which were between 30,000 and 66,500 daltons. Radioimmunoprecipitations with sera prepared against each of four recent hardjo isolates cultured from infected cattle produced similar results. Immunoprecipitations done with various radiolabeled Leptospira extracts and anti-hardjoprajitno serum demonstrated that the pathogenic leptospires possessed a number of cross-reactive major and minor protein antigens. By cell fractionation procedures, we found that most of the major protein antigens were present in the outer envelope. These proteins were exposed on the leptospiral cell surface because intact radiolabeled leptospires bound antibodies directed against them

    Identification and purification of a recombinant Treponema pallidum basic membrane protein antigen expressed in Escherichia coli.

    Get PDF
    A recombinant plasmid designated pLVS3 previously was described that harbored a 14-kilobase insert of Treponema pallidum genomic DNA. Escherichia coli maxicells programmed with this plasmid synthesized three treponemal protein antigens of molecular weights 39,000, 35,000, and 25,000 (39K, 35K, and 25K proteins, respectively). In this study, a detailed deletion analysis of pLVS3 demonstrated that the genetic information for all three protein antigens is contained within a 1.5-kilobase EcoRI-HpaI restriction fragment. The DNA sequence of this fragment revealed a single open reading frame of 361 codons that most likely encodes a signal peptide-bearing precursor to the 39K protein that can be transiently detected in E. coli maxicells. Evidence indicated that the 35K and 25K protein antigens are derivatives of the larger protein and are only produced in maxicells. A significant elevation in expression of the 39K treponemal protein antigen in E. coli was obtained by using the E. coli lpp and lac promoters and a genetic construction in which the signal peptide and first four residues of the "mature" 39K protein were replaced by six amino acids encoded by the vector. This hybrid protein exhibited an unusually high pI, which greatly facilitated its purification to homogeneity. By using antibody prepared against the hybrid protein, the native treponemal protein counterpart, also of molecular weight 39,000, was identified as a membrane component of T. pallidum. Since the native protein also exhibited a net positive charge, it has been designated the T. pallidum basic membrane protein

    Syphilis: Re-emergence of an old foe

    No full text
    Syphilis is caused by infection with Treponema pallidum subsp. pallidum, a not-yet-cultivable spiral-shaped bacterium that is usually transmitted by sexual contact with an infected partner or by an infected pregnant woman to her fetus. There is no vaccine to prevent syphilis. Diagnosis and treatment of infected individuals and their contacts is key to syphilis control programs that also include sex education and promotion of condom use to prevent infection. Untreated syphilis can progress through four stages: primary (chancre, regional lymphadenopathy), secondary (disseminated skin eruptions, generalized lymphadenopathy), latent (decreased re-occurrence of secondary stage manifestations, absence of symptoms), and tertiary (gummas, cardiovascular syphilis and late neurological symptoms). The primary and secondary stages are the most infectious. WHO estimates that each year 11 million new cases of syphilis occur globally among adults aged 15-49 years. Syphilis has re-emerged in several regions including North America, Western Europe, China and Australia. Host-associated factors that drive the re-emergence and spread of syphilis include high-risk sexual activity, migration and travel, and economic and social changes that limit access to health care. Early, uncomplicated syphilis is curable with a single intramuscular injection of benzathine penicillin G (BPG), the first line drug for all stages of syphilis. Emergence of macrolide-resistant T. pallidum has essentially precluded the empirical use of azithromycin as a second-line drug for treatment of syphilis. Virulence attributes of T. pallidum are poorly understood. Genomic and proteomic studies have provided some new information concerning how this spirochete may evade host defense mechanisms to persist for long periods in the host
    corecore