36 research outputs found

    Genetic and Epigenetic Alterations in Barrett’s Esophagus and Esophageal Adenocarcinoma

    No full text
    Esophageal adenocarcinoma (EAC) develops from Barrett's esophagus (BE), wherein normal squamous epithelia is replaced by specialized intestinal metaplasia in response to chronic gastroesophageal acid reflux. BE can progress to low- and high-grade dysplasia, intramucosal, and invasive carcinoma. Both BE and EAC are characterized by loss of heterozygosity, aneuploidy, specific genetic mutations, and clonal diversity. Given the limitations of histopathology, genomic and epigenomic analyses may improve the precision of risk stratification. Assays to detect molecular alterations associated with neoplastic progression could be used to improve the pathologic assessment of BE/EAC and to select high-risk patients for more intensive surveillance

    Case report: Calcifying fibrous tumor presenting as an asymptomatic pelvic mass

    No full text
    Calcifying fibrous tumor (CFT) is a rare benign mesenchymal tumor most commonly found in the soft tissues of the extremities and pleura. It is characterized by hyalinized collagenous fibrous tissue, with bland spindle cells, psammomatous or dystrophic calcifications, and focal lymphoplasmacytic infiltrate. CFT of the gastrointestinal tract is exceedingly uncommon. We report a case of CFT arising from the small intestine and associated mesentery; this case was identified incidentally in an otherwise healthy 45-year-old man

    Pilot Study Showing Feasibility of Phosphoproteomic Profiling of Pathway-Level Molecular Alterations in Barrett’s Esophagus

    No full text
    (1) Background: Barrett's esophagus is a major risk factor for esophageal adenocarcinoma. In this pilot study, we employed precision mass spectrometry to map global (phospho)protein perturbations in Barrett's esophagus lesions and adjacent normal tissue to glean insights into disease progression. (2) Methods: Biopsies were collected from two small but independent cohorts. Comparative analyses were performed between Barrett's esophagus samples and adjacent matched (normal) tissues from patients with known pathology, while specimens from healthy patients served as additional controls. (3) Results: We identified and quantified 6810 proteins and 6395 phosphosites in the discovery cohort, revealing hundreds of statistically significant differences in protein abundances and phosphorylation states. We identified a robust proteomic signature that accurately classified the disease status of samples from the independent patient cohorts. Pathway-level analysis of the phosphoproteomic profiles revealed the dysregulation of specific cellular processes, including DNA repair, in Barrett's esophagus relative to paired controls. Comparative analysis with previously published transcriptomic profiles provided independent evidence in support of these preliminary findings. (4) Conclusions: This pilot study establishes the feasibility of using unbiased quantitative phosphoproteomics to identify molecular perturbations associated with disease progression in Barrett's esophagus to define potentially clinically actionable targets warranting further assessment

    Abnormal TP53 Predicts Risk of Progression in Patients With Barrett’s Esophagus Regardless of a Diagnosis of Dysplasia

    No full text
    Background and aimsBarrett's esophagus (BE) is the precursor to esophageal adenocarcinoma. A major challenge is identifying the small group with BE who will progress to advanced disease from the many who will not. Assessment of p53 status has promise as a predictive biomarker, but analytic limitations and lack of validation have precluded its use. The aim of this study was to develop a robust criteria for grading abnormal immunohistochemical (IHC) expression of p53 and to test its utility as a biomarker for progression in BE.MethodsCriteria for abnormal IHC of p53 were developed in BE biopsies and validated with sequencing to assess TP53 mutations. The utility of p53 IHC as a biomarker for progression of BE was tested retrospectively in 561 patients with BE with or without known progression. The findings were prospectively validated in a clinical practice setting in 1487 patients with BE.ResultsAbnormal p53 IHC highly correlated with TP53 mutation status (90.6% agreement) and was strongly associated with neoplastic progression in the retrospective cohorts, regardless of histologic diagnosis (P < .001). In the retrospective cohort, abnormal p53 was associated with a hazard ratio of 5.03 (95% confidence interval, 3.88-6.5) and a hazard ratio of 5.27 (95% confidence interval, 3.93-7.07) for patients with exclusively nondysplastic disease before progression. In the prospective validation cohort, p53 IHC predicted progression among nondysplastic BE, indefinite for dysplasia, and low-grade dysplasia (P < .001).Conclusionsp53 IHC identifies patients with BE at higher risk of progression, including in patients without evidence of dysplasia. p53 IHC is inexpensive, easily integrated into routine practice, and should be considered in biopsies from all BE patients without high-grade dysplasia or cancer
    corecore