3,288 research outputs found
Hydrostatic equilibrium and stellar structure in f(R)-gravity
We investigate the hydrostatic equilibrium of stellar structure by taking
into account the modi- fied La\'e-Emden equation coming out from f(R)-gravity.
Such an equation is obtained in metric approach by considering the Newtonian
limit of f(R)-gravity, which gives rise to a modified Poisson equation, and
then introducing a relation between pressure and density with polytropic index
n. The modified equation results an integro-differential equation, which, in
the limit f(R) \rightarrow R, becomes the standard La\'e-Emden equation. We
find the radial profiles of gravitational potential by solving for some values
of n. The comparison of solutions with those coming from General Relativity
shows that they are compatible and physically relevant.Comment: 9 pages, 1 figur
Neural Networks for Modeling and Control of Particle Accelerators
We describe some of the challenges of particle accelerator control, highlight
recent advances in neural network techniques, discuss some promising avenues
for incorporating neural networks into particle accelerator control systems,
and describe a neural network-based control system that is being developed for
resonance control of an RF electron gun at the Fermilab Accelerator Science and
Technology (FAST) facility, including initial experimental results from a
benchmark controller.Comment: 21 p
The Post-Newtonian Limit of f(R)-gravity in the Harmonic Gauge
A general analytic procedure is developed for the post-Newtonian limit of
-gravity with metric approach in the Jordan frame by using the harmonic
gauge condition. In a pure perturbative framework and by using the Green
function method a general scheme of solutions up to order is shown.
Considering the Taylor expansion of a generic function it is possible to
parameterize the solutions by derivatives of . At Newtonian order,
, all more important topics about the Gauss and Birkhoff theorem are
discussed. The corrections to "standard" gravitational potential
(-component of metric tensor) generated by an extended uniform mass
ball-like source are calculated up to order. The corrections, Yukawa
and oscillating-like, are found inside and outside the mass distribution. At
last when the limit is considered the -gravity converges
in General Relativity at level of Lagrangian, field equations and their
solutions.Comment: 16 pages, 10 figure
Functional bioglass/carbon nanocomposite scaffolds from vat photopolymerization of a novel preceramic polymer-based nanoemulsion
Silicone polymers are already known as feedstock for a variety of silicate bioceramics, in the form of scaffolds with complex shapes, obtained by Vat Photopolymerization. Printing is enabled by using silicone blended with photocurable acrylates. The development of a particular silicate composition that functions as a glass or glass-ceramic precursor is possible by the addition of suitable oxide fillers (especially carbonate powders), suspended in the polymer blend. Oxides, from the fillers, easily react with silica left by the thermal transformation of the silicone. The fillers, however, also determine complications in Vat Photopolymerization, due to light scattering; in addition, local oxide concentrations generally impede the obtainment of glassy products. The present paper illustrates a simple solution to these issues, based on the inclusion of a Ca salt in nano-emulsion within a silicone-containing blend. Homogeneous printed samples are later converted into crack-free, fully amorphous ceramic composites, by firing at only 700 °C. The glass matrix, resembling 70S30C (70 % SiO2 and 30 % CaO) bioglass, is achieved according to the quasi-molecular CaO distribution. The secondary phase, promoted by treatment in N2 atmosphere and consisting of pyrolytic carbon, provides a marked photothermal effect
Primary care in Malta : the patients’s expectations in 2009
Given the strong literature base to support the positioning of Primary Care at the core of a sustainable National Health Service, this study examines what the Maltese general public prefer, and expect, from their family doctor, and explores their preferred systems of care changes.peer-reviewe
Effects of balloon injury on neointimal hyperplasia in steptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats.
BACKGROUND:
The mechanisms of increased neointimal hyperplasia after coronary interventions in diabetic patients are still unknown.
METHODS AND RESULTS:
Glucose and insulin effects on in vitro vascular smooth muscle cell (VSMC) proliferation and migration were assessed. The effect of balloon injury on neointimal hyperplasia was studied in streptozotocin-induced diabetic rats with or without adjunct insulin therapy. To study the effect of balloon injury in nondiabetic rats with hyperinsulinemia, pancreatic islets were transplanted under the kidney capsule in normal rats. Glucose did not increase VSMC proliferation and migration in vitro. In contrast, insulin induced a significant increase in VSMC proliferation and migration in cell cultures. Furthermore, in VSMC culture, insulin increased MAPK activation. A reduction in neointimal hyperplasia was consistently documented after vascular injury in hyperglycemic streptozotocin-induced diabetic rats. Insulin therapy significantly increased neointimal hyperplasia in these rats. This effect of hyperinsulinemia was totally abolished by transfection on the arterial wall of the N17H-ras-negative mutant gene. Finally, after experimental balloon angioplasty in hyperinsulinemic nondiabetic islet-transplanted rats, a significant increase in neointimal hyperplasia was observed.
CONCLUSIONS:
In rats with streptozotocin-induced diabetes, balloon injury was not associated with an increase in neointimal formation. Exogenous insulin administration in diabetic rats and islet transplantation in nondiabetic rats increased both blood insulin levels and neointimal hyperplasia after balloon injury. Hyperinsulinemia through activation of the ras/MAPK pathway, rather than hyperglycemia per se, seems to be of crucial importance in determining the exaggerated neointimal hyperplasia after balloon angioplasty in diabetic animals
Axially symmetric solutions in f(R)-gravity
Axially symmetric solutions for f (R)-gravity can be derived starting from
exact spherically sym- metric solutions achieved by Noether symmetries. The
method takes advantage of a complex coordi- nate transformation previously
developed by Newman and Janis in General Relativity. An example is worked out
to show the general validity of the approach. The physical properties of the
solution are also considered.Comment: 13 pages, 1 figure, to appear in Classical and Quantum Gravity 201
- …