4 research outputs found
Fundamentals and Applications of On-Chip Interferometers Based on Deep-Etched Silicon-Air Multilayer Reflectors
Les technologies de gravure profonde de silicium par plasma peuvent être utilisées pour la fabrication de miroirs verticaux à alternance de couches de silicium et d'air. Comparativement aux miroirs hors-plan fabriquées par déposition de couches minces, ces miroirs verticaux peuvent
être intégrés, de façon simple et monolithique, à une importante variété de dispositifs tels que des
tranchées pour l'alignement passif de fibres optiques, des systèmes microfluidiques, des guides d'ondes et des microsystèmes d'actionnement électromécaniques (MEMS). Par contre, tous les dispositifs rapportés à ce jour se sont montrés affectés par d'importantes pertes d'insertion (> 10
dB) lesquelles se sont traduites, dans la majorité des cas, par de faibles capacités de confinement de la lumière (ex: faibles finesses dans le cas d'interféromètres Fabry-Pérot). Le premier objectif de ce travail est donc d'identifier les sources de pertes et les limites technologiques affectant les interféromètres à miroirs multicouches verticaux. Des modèles théoriques permettant la
prédiction de pertes—dues à la divergence angulaire du faisceau Gaussien incident, à la rugosité de surface aux interfaces silicium-air, à la verticalité imparfaite des profils de gravure et aux erreurs d'alignement entre les fibres optiques de couplage—sont fournis. Il est démontré que les trois premières de ces quatre sources de pertes sont généralement significatives. Par contre, pour
ce qui est des dispositifs présentés dans cette thèse, il est démontré que l'erreur sur la verticalité
des profils de gravures (~ 0.04°) est négligeable comparativement aux pertes causées par la
rugosité de surface (30 nm RMS) et par la divergence du faisceau Gaussien incident. Il est finalement démontré que la quatrième source de perte (erreur d'alignement entre fibres optiques) peut être négligée dans pratiquement tous les cas. Puisque ces modèles correspondent
remarquablement bien à nos résultats expérimentaux, nous sommes en mesure d'établir des limites claires quant aux possibilités des interféromètres à multicouches silicium-air fabriqués par gravure profonde. À l'intérieur de ces limites, trois nouveaux dispositifs—pour des applications
potentielles comme capteurs biomédicaux, capteurs chimiques ou comme composants pour réseaux de télécommunication par fibre optique—sont proposés. Premièrement, un interféromètre Fabry-Pérot est intégré à un réseau microfluidique de silicium et est utilisé pour mesurer l'indice de réfraction de liquides. La sensibilité à l'indice de réfraction obtenue (907 nm/RIU) est considérablement élevée et, fait important, est indépendante----------Abstract Deep reactive ion etching (DRIE) of silicon can be used to fabricate vertical (i.e. in-plane)
silicon-air multilayer mirrors. In comparison with out-of-plane reflectors fabricated by thin film
deposition, in-plane multilayer assemblies can be monolithically integrated with a variety of
useful structures such as passive optical fiber alignment grooves, microfluidic systems,
waveguides, and microelectromechanical (MEMS) actuators. However, all previously reported
devices suffered from high insertion losses (> 10 dB) which translated, in most cases, in weak
light confinement abilities (e.g. low finesses in the case of Fabry-Perot cavities). The first
objective of this work is therefore to investigate the sources of loss and the technological
limitations that affect interferometers based on deep-etched multilayer reflectors. Theoretical
models for the prediction of losses—due to Gaussian beam divergence, surface roughness at
silicon-air material interfaces, imperfect verticality of the etch profiles, and misalignment
between input and output coupling optical fibers—are provided. Of these four loss mechanisms,
the first three are demonstrated to be generally significant. For the devices presented in the
current thesis, however, verticality deviation of the etch profiles (etch angle error ~ 0.04°) is
found to be negligible compared with the measured contributions of surface roughness (30 nm
RMS) and Gaussian beam divergence. The fourth loss mechanism (fiber misalignment) is found
to be essentially negligible in all cases. These theoretical models are demonstrated to correspond
remarkably well with our experimental results, such that we are able to state clear boundaries on
the possibilities and limitations of interferometers based on deep-etched silicon-air multilayer
reflectors. Within these boundaries, three new devices—with potential applications in biomedical
sensing, chemical sensing, and optical fiber telecommunications—are investigated.
Firstly, a deep-etched Fabry-Perot interferometer is monolithically integrated with a
silicon microfluidic system and is used to measure the refractive index of homogenous liquids.
The refractive index sensitivity of this interferometer (907 nm/RIU) is found to be considerably
high and, interestingly, to be independent of insertion losses. A refractive index resolution among
the highest reported, for volumetric sensing in microfluidic systems, is consequently achieved
(1.7×10−5 RIU), even if high insertion losses (~ 25 dB) and low resonance finesse (< 10) affect
the interferometer. This sensor performs measurements in volumes (~ pL) similar to those of
single living cells, and allows great flexibility in the design of monolithically integrate
tDCS Task-Oriented Approach Improves Function in Individuals With Fibromyalgia Pain. A Pilot Study
Fibromyalgia (FM) is a complex pain syndrome accompanied by physical disability and loss of daily life activities. Evidences suggest that modulation of the primary motor cortex (M1) by transcranial direct current stimulation (tDCS) improves functional physical capacity in chronic pain conditions. However, the gain on physical function in people living with FM receiving tDCS is still unclear. This study aimed to evaluate whether the tDCS task-oriented approach improves function and reduces pain in a single cohort of 10 FM. A total of 10 women with FM (60.4 ± 15.37 years old) were enrolled in an intervention including anodal tDCS delivered on M1 (2 mA from a constant stimulator for 20 min); simultaneously they performed a functional task. The anode was placed on the contralateral hemisphere of the dominant hand. Outcome assessments were done before the stimulation, immediately after stimulation and 30 min after the end of tDCS. The same protocol was applied in subsequent sessions. A total of five consecutive days of tDCS were completed. The main outcomes were the number of repetitions achieved and time in active practice to evaluate functional physical task performance such as intensity of the pain (visual analog scale) and level of fatigue (Borg scale). After 5 days of tDCS, the number of repetitions achieved significantly increased by 49% (p = 0.012). No change was observed in active practice time. No increase in pain was observed despite the mobility of the painful parts of the body. These results are encouraging since an increase in pain due to the mobilization of painful body parts could have been observed at the end of the 5th day of the experiment. These results support the use of tDCS in task-based rehabilitation