53 research outputs found
Correction of bleeding in experimental severe hemophilia A by systemic delivery of factor VIII-encoding mRNA
The treatment or prevention of bleeding in patients with hemophilia A relies on replacement therapy with different factor VIII (FVIII)-containing products or on the use of by-passing agents, i.e., activated prothrombin complex concentrates or recombinant activated factor VII. Emerging approaches include the use of bispecific anti-factor IXa/factor X antibodies, anti-tissue factor pathway inhibitor antibodies, interfering RNA to antithrombin, and activated protein C-specific serpins or gene therapy. The latter strategies are, however, hampered by the short clinical experience and potential adverse effects including the absence of tight temporal and spatial control of coagulation and the risk of uncontrolled insertional mutagenesis. Systemic delivery of mRNA allows endogenous production of the corresponding encoded protein. Thus, injection of erythropoietin-encoding mRNA in a lipid nanoparticle formulation resulted in increased erythropoiesis in mice and macaques. Here, we demonstrate that a single injection of in vitro transcribed B domain-deleted FVIII-encoding mRNA to FVIII-deficient mice enables endogenous production of pro-coagulant FVIII. Circulating FVIII:C levels above 5% of normal levels were maintained for up to 72 h, with an estimated half-life of FVIII production of 17.9 h, and corrected the bleeding phenotype in a tail clipping assay. The endogenously produced FVIII did however exhibit low specific activity and induced a potent neutralizing IgG response upon repeated administration of the mRNA. Our results suggest that the administration of mRNA is a plausible strategy for the endogenous production of proteins characterized by poor translational efficacy. The use of alternative mRNA delivery systems and improved FVIII-encoding mRNA should foster the production of functional molecules and reduce their immunogenicity
Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1 and prostaglandin E<SUB>2</SUB>-induced regulatory T cell expansion
CD4+CD25+FoxP3+ regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E2 (PGE2) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen
Physiological Induction of Regulatory Qa-1-Restricted CD8+ T Cells Triggered by Endogenous CD4+ T Cell Responses
T cell-dependent autoimmune diseases are characterized by the expansion of T cell clones that recognize immunodominant epitopes on the target antigen. As a consequence, for a given autoimmune disorder, pathogenic T cell clones express T cell receptors with a limited number of variable regions that define antigenic specificity. Qa-1, a MHC class I-like molecule, presents peptides from the variable region of TCRs to Qa-1-restricted CD8+ T cells. The induction of Vß-specific CD8+ T cells has been harnessed in an immunotherapeutic strategy known as the “T cell vaccination” (TCV) that comprises the injection of activated and attenuated CD4+ T cell clones so as to induce protective CD8+ T cells. We hypothesized that Qa-1-restricted CD8+ regulatory T cells could also constitute a physiologic regulatory arm of lymphocyte responses upon expansion of endogenous CD4+ T cells, in the absence of deliberate exogenous T cell vaccination. We immunized mice with two types of antigenic challenges in order to sequentially expand antigen-specific endogenous CD4+ T cells with distinct antigenic specificities but characterized by a common Vß chain in their TCR. The first immunization was performed with a non-self antigen while the second challenge was performed with a myelin-derived peptide known to drive experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We show that regulatory Vß-specific Qa-1-restricted CD8+ T cells induced during the first endogenous CD4+ T cell responses are able to control the expansion of subsequently mobilized pathogenic autoreactive CD4+ T cells. In conclusion, apart from the immunotherapeutic TCV, Qa-1-restricted specialized CD8+ regulatory T cells can also be induced during endogenous CD4+ T cell responses. At variance with other regulatory T cell subsets, the action of these Qa-1-restricted T cells seems to be restricted to the immediate re-activation of CD4+ T cells
Therapeutic intervention in inflammatory pathologies and cancer (understanding the anti-inflammatory properties of Viscum album)
Les progrès réalisés en immunologie ont orienté les recherches vers des approches et des stratégies de plus en plus prometteuses et innovantes afin de mieux manipuler la réponse immunitaire. Le but de nos recherches est la prévention et le traitement des maladies liées aux dysfonctionnements du système immunitaire, telles que les maladies auto-immunes, inflammatoires et malignes. Bien que l inflammation constitue un processus physiologique indispensable au maintien de l homéostasie suite à une infection ou à une lésion, elle est également associée à des pathologies infectieuses, auto-immunes et tumorales. Les stratégies thérapeutiques les plus utilisées pour traiter l inflammation sont basées sur la neutralisation des médiateurs inflammatoires par des anticorps, des antagonistes moléculaires, des immunoglobulines intraveineuses, des corticostéroïdes, des médicaments anti-inflammatoires non stéroïdiens. En plus des traitements mentionnés, des produits issus de la phytothérapie ont été largement utilisés afin d atténuer l'inflammation et la douleur dans plusieurs maladies inflammatoires et dans le cancer. Depuis des décennies, les préparations de Viscum album, connu sous le nom de gui européen , sont largement utilisées dans le traitement du cancer comme thérapie auxiliaire. Bien que les mécanismes d action soient partiellement connus, plusieurs hypothèses ont été proposées. En effet, les mécanismes anti-tumoraux du Viscum album impliquent des propriétés induisant une cytotoxicité, l'apoptose, l'inhibition de l'angiogenèse et plusieurs autres mécanismes immunomodulateurs. Ce travail décrit un nouveau mécanisme anti-inflammatoire de Viscum album, qui participe à l effet thérapeutique de ces préparations. De plus, l effet bénéfique anti-inflammatoire observé est associé à l inhibition des voies pro- inflammatoires de COX2 et PGE2 dans les cellules épithéliales issues d adénocarcinome du poumon. Ce travail a identifié un des mécanismes moléculaires de Viscum album associé à son effet anti-inflammatoire participant à ses bénéfices thérapeutiques. Ainsi, ces préparations pourraient être utilisées en combinaison avec d autres traitements dans des maladies inflammatoires et dans le cancer.Recent advances in immunology research have led us towards more promising approaches and strategies to manipulate the immune response to prevent or treat the diseases related to immune dysfunction such as autoimmune, inflammatory pathologies and malignant diseases. Although, immuno inflammation is a basal physiological phenomenon required to eliminate the causative agent and to initiate the healing process, it is a physiopathological symptom in a diverse conditions of infectious, autoimmune and tumoral origin. Various therapeutic strategies have been developed in order to reduce inflammation and pain, including the treatment with cytokine neutralizing antibodies, molecular antagonists, intravenous immunoglobulins, corticosteroids, non-steroid anti-inflammatory drugs (NSAID) and several others. In addition to these well known anti-inflammatory therapeutic strategies, treatment with various phytotherapeutics has also contributed enormously to control inflammation and pain, associated with various severe inflammatory disorders and cancer. Viscum album (VA) preparations, commonly known as European mistletoe, are extensively used as complementary therapy in cancer for decades. However the mechanisms of action have been partially understood. Several mutually non-exclusive mechanisms have been proposed such as anti-tumor properties which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. This study reveals anti-inflammatory mechanism as another important mechanism of action of these phytotherapeutics, which is responsible for their therapeutic benefit and addresses the molecular mechanisms in the pro-inflammatory axis of COX-2 and PGE2 using in vitro experimental model of human lung adenocarcinoma. The present work contributes for a better understanding of mechanisms of action of Viscum album preparations underlying their therapeutic benefit and allows us to revitalize the therapeutic strategies used in treatment of inflammatory disorders and cancer.COMPIEGNE-BU (601592101) / SudocSudocFranceF
Immunointervention of immune pathologies and cancer : studies on the use of therapeutic immunoglobulins and viscum album preparations
COMPIEGNE-BU (601592101) / SudocSudocFranceF
Viscum album-mediated COX-2 inhibition implicates destabilization of COX-2 mRNA.
Extensive use of Viscum album (VA) preparations in the complementary therapy of cancer and in several other human pathologies has led to an increasing number of cellular and molecular approaches to explore the mechanisms of action of VA. We have recently demonstrated that, VA preparations exert a potent anti-inflammatory effect by selectively down-regulating the COX-2-mediated cytokine-induced secretion of prostaglandin E2 (PGE2), one of the important molecular signatures of inflammatory reactions. In this study, we observed a significant down-regulation of COX-2 protein expression in VA-treated A549 cells however COX-2 mRNA levels were unaltered. Therefore, we hypothesized that VA induces destabilisation of COX-2 mRNA, thereby depleting the available functional COX-2 mRNA for the protein synthesis and for the subsequent secretion of PGE2. To address this question, we analyzed the molecular degradation of COX-2 protein and its corresponding mRNA in A549 cell line. Using cyclohexamide pulse chase experiment, we demonstrate that, COX-2 protein degradation is not affected by the treatment with VA whereas experiments on transcriptional blockade with actinomycin D, revealed a marked reduction in the half life of COX-2 mRNA due to its rapid degradation in the cells treated with VA compared to that in IL-1β-stimulated cells. These results thus demonstrate that VA-mediated inhibition of PGE2 implicates destabilization of COX-2 mRNA
Biochemical characterization and immunogenicity of Neureight, a recombinant full-length factor VIII produced by fed-batch process in disposable bioreactors
International audienceHemophilia A is a X-linked recessive bleeding disorder consecutive to the lack of circulating pro-coagulant factor VIII (FVIII). The most efficient strategy to treat or prevent bleeding in patients with hemophilia A relies on replacement therapy using exogenous FVIII. Commercially available recombinant FVIII are produced using an expensive perfusion technology in stainless steel fermenters. A fed-batch fermentation technology was recently developed to produce 'Neureight', a full-length recombinant human FVIII, in Chinese hamster ovary (CHO) cells. Here, we investigated the structural and functional integrity and lack of increased immunogenicity of Neureight, as compared to two commercially available full-length FVIII products, Helixate and Advate, produced in baby hamster kidney or CHO cells, respectively. Our results demonstrate the purity, stability and functional integrity of Neureight with a standard specific activity of 4235 ± 556 IU/mg. The glycosylation and sulfation profiles of Neureight were similar to that of Advate, with the absence of the antigenic carbohydrate epitopes α-Gal and Neu5Gc, and with sulfation of Y1680, that is critical for FVIII binding to von Willebrand factor (VWF). The endocytosis of Neureight by human immature dendritic cells was inhibited by VWF, and its half-life in FVIII-deficient mice was similar to that of Advate, confirming unaltered binding to VWF. In vitro and in vivo assays indicated a similar immunogenicity for Neureight, Advate and Helixate. In conclusion, the production of full-length FVIII in a fed-batch fermentation mode generates a product that presents similar biochemical, functional and immunogenic properties as products developed using the classical perfusion technology
- …