2 research outputs found

    Versatile and User-Friendly Anti-infective Hydrogel for Effective Wound Healing

    No full text
    Wound dressings play a crucial role in facilitating optimal wound healing and protecting against microbial infections. However, existing commercial options often fall short in addressing chronic infections due to antibiotic resistance and the limited spectrum of activity against both Gram-positive and Gram-negative bacteria frequently encountered at wound sites. Additionally, complex fabrication processes and cumbersome administration strategies pose challenges for cost-effective wound dressing development. Consequently, there is a pressing need to explore easily engineered biocompatible biomaterials as alternative solutions to combat these challenging wound infections. In this study, we present the development of an anti-infective hydrogel, P-BAC (polymeric bactericidal hydrogel), which exhibits simple administration and promotes efficient wound healing. P-BAC is synthesized via a one-step fabrication method that involves the noncovalent cross-linking of poly(vinyl alcohol), N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride-AgCl nanocomposite, and proline. Remarkably, P-BAC demonstrates broad-spectrum antibacterial activity against both planktonic and stationary cells of clinically isolated Gram-positive and Gram-negative bacteria, resulting in a significant reduction of bacterial load (5–7 log reduction). Moreover, P-BAC exhibits excellent efficacy in eradicating bacterial cells within biofilm matrices (>95% reduction). In vivo experiments reveal that P-BAC accelerates wound healing by stimulating rapid collagen deposition at the wound site and effectively inactivates ∼95% of Pseudomonas aeruginosa cells. Importantly, the shear-thinning property of P-BAC simplifies the administration process, enhancing its practicality and usability. Taken together, our findings demonstrate the potential of this easily administrable hydrogel as a versatile solution for effective wound healing with potent anti-infective properties. The developed hydrogel holds promise for applications in diverse healthcare settings, addressing the critical need for improved wound dressing materials

    Permanent, Antimicrobial Coating to Rapidly Kill and Prevent Transmission of Bacteria, Fungi, Influenza, and SARS-CoV‑2

    No full text
    Microbial adhesion and contamination on shared surfaces can lead to life-threatening infections with serious impacts on public health, economy, and clinical practices. The traditional use of chemical disinfectants for sanitization of surfaces, however, comes with its share of health risks, such as hazardous effects on the eyes, skin, and respiratory tract, carcinogenicity, as well as environmental toxicity. To address this, we have developed a nonleaching quaternary small molecule (QSM)-based sprayable coating which can be fabricated on a wide range of surfaces such as nylon, polyethylene, surgical mask, paper, acrylate, and rubber in a one-step, photocuring technique. This contact-active coating killed pathogenic bacteria and fungi including drug-resistant strains of Staphylococcus aureus and Candida albicans within 15–30 min of contact. QSM coatings withstood multiple washes, highlighting their durability. Interestingly, the coated surfaces exhibited rapid killing of pathogens, leading to the prevention of their transmission upon contact. The coating showed membrane disruption of bacterial cells in fluorescence and electron microscopic investigations. Along with bacteria and fungi, QSM-coated surfaces also showed the complete killing of high loads of influenza (H1N1) and SARS-CoV-2 viruses within 30 min of exposure. To our knowledge, this is the first report of a coating for multipurpose materials applied in high-touch public places, hospital equipment, and clinical consumables, rapidly killing drug-resistant bacteria, fungi, influenza virus, and SARS-CoV-2
    corecore