1,301 research outputs found
Internal Motility in Stiffening Actin-Myosin Networks
We present a study on filamentous actin solutions containing heavy meromyosin
subfragments of myosin II motor molecules. We focus on the viscoelastic phase
behavior and internal dynamics of such networks during ATP depletion. Upon
simultaneously using micro-rheology and fluorescence microscopy as
complementary experimental tools, we find a sol-gel transition accompanied by a
sudden onset of directed filament motion. We interpret the sol-gel transition
in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain
the filament motion in the vicinity of the sol-gel transition.Comment: 4 pages, 3 figure
Attractant and Repellent Signaling Conformers of Sensory RhodopsinâTransducer Complexesâ
ABSTRACT: Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI-HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pKa of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by âŒ1.5 units from that of the inwardly connected conformer. The pK a difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the onephoton excitation of the SRI-HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI-HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII-HtrII receptor complex has an outwardly connecte
Polymer Induced Bundling of F-actin and the Depletion Force
The inert polymer polyethylene glycol (PEG) induces a "bundling" phenomenon
in F-actin solutions when its concentration exceeds a critical onset value C_o.
Over a limited range of PEG molecular weight and ionic strength, C_o can be
expressed as a function of these two variables. The process is reversible, but
hysteresis is also observed in the dissolution of the bundles, with ionic
strength having a large influence. Additional actin filaments are able to join
previously formed bundles. Little, if any, polymer is associated with the
bundle structure.
Continuum estimates of the Asakura-Oosawa depletion force, Coulomb repulsion,
and van der Waals potential are combined for a partial explanation of the
bundling effect and hysteresis. Conjectures are presented concerning the
apparent limit in bundle size
Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane
Actin filament, F-actin, is a semiflexible polymer with a negative charge,
and is one of the main constituents on cell membranes. To clarify the effect of
cross-talk between a phospholipid membrane and actin filaments in cells, we
conducted microscopic observations on the structural changes in actin filaments
in a cell-sized (several tens of micrometers in diameter) water droplet coated
with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged
head group) or phosphatidylethanolamine (PE; neutral head group) as a simple
model of a living cell membrane. With PS, actin filaments are distributed
uniformly in the water phase without adsorption onto the membrane surface
between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are
adsorbed onto the inner membrane surface. With PE, actin filaments are
uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+.
With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick
bundles are formed in the bulk water droplet accompanied by the dissolution of
actin filaments from the membrane surface. The attraction between actin
filaments and membrane is attributable to an increase in the translational
entropy of counterions accompanied by the adsorption of actin filaments onto
the membrane surface. These results suggest that a microscopic water droplet
coated with phospholipid can serve as an easy-to-handle model of cell
membranes
Fluctuating-friction molecular motors
We show that the correlated stochastic fluctuation of the friction
coefficient can give rise to long-range directional motion of a particle
undergoing Brownian random walk in a constant periodic energy potential
landscape. The occurrence of this motion requires the presence of two
additional independent bodies interacting with the particle via friction and
via the energy potential, respectively, which can move relative to each other.
Such three-body system generalizes the classical Brownian ratchet mechanism,
which requires only two interacting bodies. In particular, we describe a simple
two-level model of fluctuating-friction molecular motor that can be solved
analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt.
Phys. Mater. vol. 9, 157] this model has been first applied to understanding
the fundamental mechanism of the photoinduced reorientation of dye-doped liquid
crystals. Applications of the same idea to other fields such as molecular
biology and nanotechnology can however be envisioned. As an example, in this
paper we work out a model of the actomyosin system based on the
fluctuating-friction mechanism.Comment: to be published in J. Physics Condensed Matter
(http://www.iop.org/Journals/JPhysCM
Spontaneous Oscillations of Collective Molecular Motors
We analyze a simple stochastic model to describe motor molecules which
cooperate in large groups and present a physical mechanism which can lead to
oscillatory motion if the motors are elastically coupled to their environment.
Beyond a critical fuel concentration, the non-moving state of the system
becomes unstable with respect to a mode with angular frequency omega. We
present a perturbative description of the system near the instability and
demonstrate that oscillation frequencies are determined by the typical
timescales of the motors.Comment: 11 pages, Revtex, 4 pages Figure
A Microscopic Mechanism for Muscle's Motion
The SIRM (Stochastic Inclined Rods Model) proposed by H. Matsuura and M.
Nakano can explain the muscle's motion perfectly, but the intermolecular
potential between myosin head and G-actin is too simple and only repulsive
potential is considered. In this paper we study the SIRM with different complex
potential and discuss the effect of the spring on the system. The calculation
results show that the spring, the effective radius of the G-actin and the
intermolecular potential play key roles in the motion. The sliding speed is
about calculated from the model which well agrees with
the experimental data.Comment: 9 pages, 6 figure
- âŠ