4 research outputs found

    Uncertainty-Aware Principal Component Analysis

    Full text link
    We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach

    explAIner: A Visual Analytics Framework for Interactive and Explainable Machine Learning

    Full text link
    We propose a framework for interactive and explainable machine learning that enables users to (1) understand machine learning models; (2) diagnose model limitations using different explainable AI methods; as well as (3) refine and optimize the models. Our framework combines an iterative XAI pipeline with eight global monitoring and steering mechanisms, including quality monitoring, provenance tracking, model comparison, and trust building. To operationalize the framework, we present explAIner, a visual analytics system for interactive and explainable machine learning that instantiates all phases of the suggested pipeline within the commonly used TensorBoard environment. We performed a user-study with nine participants across different expertise levels to examine their perception of our workflow and to collect suggestions to fill the gap between our system and framework. The evaluation confirms that our tightly integrated system leads to an informed machine learning process while disclosing opportunities for further extensions.Comment: 9 pages paper, 2 pages references, 5 pages supplementary material (ancillary files

    Fuzzy Logic in Surveillance Big Video Data Analysis: Comprehensive Review, Challenges, and Research Directions

    Get PDF
    CCTV cameras installed for continuous surveillance generate enormous amounts of data daily, forging the term “Big Video Data” (BVD). The active practice of BVD includes intelligent surveillance and activity recognition, among other challenging tasks. To efficiently address these tasks, the computer vision research community has provided monitoring systems, activity recognition methods, and many other computationally complex solutions for the purposeful usage of BVD. Unfortunately, the limited capabilities of these methods, higher computational complexity, and stringent installation requirements hinder their practical implementation in real-world scenarios, which still demand human operators sitting in front of cameras to monitor activities or make actionable decisions based on BVD. The usage of human-like logic, known as fuzzy logic, has been employed emerging for various data science applications such as control systems, image processing, decision making, routing, and advanced safety-critical systems. This is due to its ability to handle various sources of real world domain and data uncertainties, generating easily adaptable and explainable data-based models. Fuzzy logic can be effectively used for surveillance as a complementary for huge-sized artificial intelligence models and tiresome training procedures. In this paper, we draw researchers’ attention towards the usage of fuzzy logic for surveillance in the context of BVD. We carry out a comprehensive literature survey of methods for vision sensory data analytics that resort to fuzzy logic concepts. Our overview highlights the advantages, downsides, and challenges in existing video analysis methods based on fuzzy logic for surveillance applications. We enumerate and discuss the datasets used by these methods, and finally provide an outlook towards future research directions derived from our critical assessment of the efforts invested so far in this exciting field

    Speculative Execution of Similarity Queries : Real-Time Parameter Optimization through Visual Exploration

    No full text
    The parameters of complex analytical models often have an unpredictable influence on the models’ results, rendering parameter tuning a non-intuitive task. By concurrently visualizing both the model and its results, visual analytics tackles this issue, supporting the user in understanding the connection between abstract model parameters and model results. We present a visual analytics system enabling result understanding and model refinement on a ranking-based similarity search algorithm. Our system (1) visualizes the results in a projection view, mapping their pair-wise similarity to screen distance, (2) indicates the influence of model parameters on the results, and (3) implements speculative execution to enable real-time iterative refinement on the time-intensive offline similarity search algorithm.publishe
    corecore