57 research outputs found

    A Nonsynonymous Change in Adhesion G Protein–Coupled Receptor L3 Associated With Risk for Equine Degenerative Myeloencephalopathy in the Caspian Horse

    Get PDF
    Equine degenerative myeloencephalopathy (EDM), a neurological disease of young horses, causes progressive development of symmetric ataxia predominantly in the pelvic limbs. Equine degenerative myeloencephalopathy is likely inherited and with no known treatment affected horses frequently need euthanasia. Alpha-tocopherol deficiency during early life appears to contribute to the phenotype. This study sought to identify any genetic variants correlated with EDM in Caspian foals. Two half-sibling EDM-diagnosed cases were genotyped at 52,063 loci and evaluated by the Autozygosity by Difference statistic. Additional horses not affected by EDM were used for genetic comparison to identify regions unique to the case phenotype. The associated region on chromosome 3 contains only one gene encoding adhesion G protein–coupled receptor L3 (ADGRL3). Adhesion G protein–coupled receptor L3 is a member of the latrophilin subfamily of G protein–coupled receptors and may contribute to attention deficit/hyperactivity disorder in humans and hyperactive motor function in mice and zebrafish. Analysis of the predicted coding regions for Equine ADGRL3 in affected horses revealed a nonsynonymous single nucleotide polymorphism at Chr3:71,917,591 bp. Caspian and Caspian cross-relatives (n = 81) of the two initial cases and unrelated horses from similar breeds (n = 130, including Arabians, American Miniatures, and Shetlands) possessed this allele at 5% frequency, with no homozygotes observed within the non-Caspian breeds. This study suggests that a polymorphism in ADGRL3 could contribute to a genetic predisposition to Caspian horse EDM

    Specific Thiazolidinediones Inhibit Ovarian Cancer Cell Line Proliferation and Cause Cell Cycle Arrest in a PPARÎł Independent Manner

    Get PDF
    Peroxisome Proliferator Activated Receptor gamma (PPARÎł) agonists, such as the thiazolinediones (TZDs), have been studied for their potential use as cancer therapeutic agents. We investigated the effect of four TZDs--Rosiglitazone (Rosi), Ciglitazone (CGZ), Troglitazone (TGZ), and Pioglitazone (Pio)--on ovarian cancer cell proliferation, PPARÎł expression and PPAR luciferase reporter activity. We explored whether TZDs act in a PPARÎł dependent or independent manner by utilizing molecular approaches to inhibit or overexpress PPARÎł activity.Treatment with CGZ or TGZ for 24 hours decreased proliferation in three ovarian cancer cell lines, Ovcar3, CaOv3, and Skov3, whereas Rosi and Pio had no effect. This decrease in Ovcar3 cell proliferation was due to a higher fraction of cells in the G(0)/G(1) stage of the cell cycle. CGZ and TGZ treatment increased apoptosis after 4 hours of treatment but not after 8 or 12 hours. Treatment with TGZ or CGZ increased PPARÎł mRNA expression in Ovcar3 cells; however, protein levels were unchanged. Surprisingly, luciferase promoter assays revealed that none of the TZDs increased PPARÎł activity. Overexpression of wild type PPARÎł increased reporter activity. This was further augmented by TGZ, Rosi, and Pio indicating that these cells have the endogenous capacity to mediate PPARÎł transactivation. To determine whether PPARÎł mediates the TZD-induced decrease in proliferation, cells were treated with CGZ or TGZ in the absence or presence of a dominant negative (DN) or wild type overexpression PPARÎł construct. Neither vector changed the TZD-mediated cell proliferation suggesting this effect of TZDs on ovarian cancer cells may be PPARÎł independent.CGZ and TGZ cause a decrease in ovarian cancer cell proliferation that is PPARÎł independent. This concept is supported by the finding that a DN or overexpression of the wild type PPARÎł did not affect the changes in cell proliferation and cell cycle

    Ontogenetic scaling of the human nose in a longitudinal sample: Implications for genus Homo facial evolution

    No full text
    Researchers have hypothesized that nasal morphology, both in archaic Homo and in recent humans, is influenced by body mass and associated oxygen consumption demands required for tissue maintenance. Similarly, recent studies of the adult human nasal region have documented key differences in nasal form between males and females that are potentially linked to sexual dimorphism in body size, composition, and energetics. To better understand this potential developmental and functional dynamic, we first assessed sexual dimorphism in the nasal cavity in recent humans to determine when during ontogeny male-female differences in nasal cavity size appear. Next, we assessed whether there are significant differences in nasal/body size scaling relationships in males and females during ontogeny. Using a mixed longitudinal sample we collected cephalometric and anthropometric measurements from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations. We found that males and females exhibit similar nasal size values early in ontogeny and that sexual dimorphism in nasal size appears during adolescence. Moreover, when scaled to body size, males exhibit greater positive allometry in nasal size compared to females. This differs from patterns of sexual dimorphism in overall facial size, which are already present in our earliest age groups. Sexually dimorphic differences in nasal development and scaling mirror patterns of ontogenetic variation in variables associated with oxygen consumption and tissue maintenance. This underscores the importance of considering broader systemic factors in craniofacial development and may have important implications for the study of patters craniofacial evolution in the genus Homo. Copyright © 2013 Wiley Periodicals, Inc

    Ontogenetic Scaling of the Human Nose in a Longitudinal Sample: Implications for Genus Homo Facial Evolution

    No full text
    Researchers have hypothesized that nasal morphology, both in archaic Homo and in recent humans, is influenced by body mass and associated oxygen consumption demands required for tissue maintenance. Similarly, recent studies of the adult human nasal region have documented key differences in nasal form between males and females that are potentially linked to sexual dimorphism in body size, composition, and energetics. To better understand this potential developmental and functional dynamic, we first assessed sexual dimorphism in the nasal cavity in recent humans to determine when during ontogeny male-female differences in nasal cavity size appear. Next, we assessed whether there are significant differences in nasal/body size scaling relationships in males and females during ontogeny. Using a mixed longitudinal sample we collected cephalometric and anthropometric measurements from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations. We found that males and females exhibit similar nasal size values early in ontogeny and that sexual dimorphism in nasal size appears during adolescence. Moreover, when scaled to body size, males exhibit greater positive allometry in nasal size compared to females. This differs from patterns of sexual dimorphism in overall facial size, which are already present in our earliest age groups. Sexually dimorphic differences in nasal development and scaling mirror patterns of ontogenetic variation in variables associated with oxygen consumption and tissue maintenance. This underscores the importance of considering broader systemic factors in craniofacial development and may have important implications for the study of patters craniofacial evolution in the genus Homo. Copyright © 2013 Wiley Periodicals, Inc

    Development of the mandibular curve of spee and maxillary compensating curve: A finite element model.

    No full text
    The curved planes of the human dentition seen in the sagittal view, the mandibular curve of Spee and the maxillary compensating curve, have clinical importance to modern dentistry and potential relevance to the craniofacial evolution of hominins. However, the mechanism providing the formation of these curved planes is poorly understood. To explore this further, we use a simplified finite element model, consisting of maxillary and mandibular "blocks", developed to simulate tooth eruption, and forces opposing eruption, during simplified masticatory function. We test our hypothesis that curved occlusal planes develop from interplay between tooth eruption, occlusal load, and mandibular movement. Our results indicate that our simulation of rhythmic chewing movement, tooth eruption, and tooth eruption inhibition, applied concurrently, results in a transformation of the contacting maxillary and mandibular block surfaces from flat to curved. The depth of the curvature appears to be dependent on the radius length of the rotating (chewing) movement of the mandibular block. Our results suggest mandibular function and maxillo-mandibular spatial relationship may contribute to the development of human occlusal curvature

    Effect of PPARÎł antagonists on Ovcar3 proliferation.

    No full text
    <p>Cells were treated with GW9662 (<b>A</b>) or T007 (<b>B</b>) for 24 h and cell proliferation was assessed. Results are the means ± SEM for at least 4 measurements. Bars that do not share a letter designation are significantly different (<i>p</i><0.05).</p
    • …
    corecore