22 research outputs found

    Summary of Sonic Boom Rise Times Observed During FAA Community Response Studies over a 6-Month Period in the Oklahoma City Area

    Get PDF
    The sonic boom signature data acquired from about 1225 supersonic flights, over a 6-month period in 1964 in the Oklahoma City area, was enhanced with the addition of data relating to rise times and total signature duration. These later parameters, not available at the time of publication of the original report on the Oklahoma City sonic boom exposures, are listed in tabular form along with overpressure, positive impulse, positive duration, and waveform category. Airplane operating information along with the surface weather observations are also included. Sonic boom rise times include readings to the 1/2, 3/4, and maximum overpressure values. Rise time relative probabilities for various lateral locations from the ground track of 0, 5, and 10 miles are presented along with the variation of rise times with flight altitude. The tabulated signature data, along with corresponding airplane operating conditions and surface and upper level atmospheric information, are also available on electronic files to provide it in the format for more efficient and effective utilization

    A summary of XB-70 sonic boom signature data

    Get PDF
    A compilation is provided of measured sonic boom signature data derived from 39 supersonic flights (43 passes) of the XB-70 airplane over the Mach number range of 1.11 to 2.92 and an altitude range of 30500 to 70300 ft. These tables represent a convenient hard copy version of available electronic files which include over 300 digitized sonic boom signatures with their corresponding spectra. Also included in the electronic files is information regarding ground track position, aircraft operating conditions, and surface and upper air weather observations for each of the 43 supersonic passes. In addition to the sonic boom signature data, a description is also provided of the XB-70 data base that was placed on electronic files along with a description of the method used to scan and digitize the analog/oscillograph sonic boom signature time histories. Such information is intended to enhance the value and utilization of the electronic files

    Feasibility study on conducting overflight measurements of shaped sonic boom signatures using the Firebee BQM-34E RPV

    Get PDF
    A study was performed to determine the feasibility of establishing if a 'shaped' sonic boom signature, experimentally shown in wind tunnel models out to about 10 body lengths, will persist out to representative flight conditions of 200 to 300 body lengths. The study focuses on the use of a relatively large supersonic remotely-piloted and recoverable vehicle. Other simulation methods that may accomplish the objective are also addressed and include the use of nonrecoverable target drones, missiles, full-scale drones, very large wind tunnels, ballistic facilities, whirling-arm techniques, rocket sled tracks, and airplane nose probes. In addition, this report will also present a background on the origin of the feasibility study including a brief review of the equivalent body concept, a listing of the basic sonic boom signature characteristics and requirements, identification of candidate vehicles in terms of desirable features/availability, and vehicle characteristics including geometries, area distributions, and resulting sonic boom signatures. A program is developed that includes wind tunnel sonic boom and force models and tests for both a basic and modified vehicles and full-scale flight tests

    Overview of feasibility study on conducting overflight measurements of shaped sonic boom signatures using RPV's

    Get PDF
    Before beginning this presentation, it is appropriate to acknowledge the sincere interest and financial support provided by the NASA LaRC under contract NAS9-17900. An outline of the material to be used in the present paper is given. It begins with a indication of the origin and objectives of the feasibility study. This is followed by a discussion of various simulation methods of establishing the persistence of shaped sonic boom signatures to large distances including the use of recoverable RPV/drones. The desirable features to be sought out in an RPV along with a rationale for the selection of a 'shaped' sonic boom signature will be addressed. Three candidate vehicles are examined as to their suitability with respect to a number of factors, in particular, modifiability. Area distributions and associated sonic boom signatures of the basic and modified Firebee vehicle will also be shown. An indication of the scope of the proposed wind tunnel and flight test programs will be presented including measurement technologies and predicted waveforms. Finally, some remarks will be made summarizing the study and highlighting the key findings

    Velocity anisotropy and attenuation in shale in under and over pressured conditions

    No full text
    Ultrasonic compressional- and shear-wave attenuation measurements have been made on 40, centimetre-sized samples of water- and oil-saturated oolitic limestones at 50 MPa effective hydrostatic pressure (confining pressure minus pore-fluid pressure) at frequencies of about 0.85 MHz and 0.7 MHz respectively, using the pulse-echo method. The mineralogy, porosity, permeability and the distribution of the pore types of each sample were determined using a combination of optical and scanning electron microscopy, a helium porosimeter and a nitrogen permeameter. The limestones contain a complex porosity system consisting of interparticle macropores (dimensions up to 300 microns) and micropores (dimensions 5–10 microns) within the ooids, the calcite cement and the mud matrix. Ultrasonic attenuation reaches a maximum value in those limestones in which the dual porosity system is most fully developed, indicating that the squirt-flow mechanism, which has previously been shown to occur in shaley sandstones, also operates in the limestones. It is argued that the larger-scale dual porosity systems present in limestones in situ could similarly cause seismic attenuation at the frequencies of field seismic surveys through the operation of the squirt-flow mechanism

    Laboratory estimates of normal/shear fracture compliance ratio

    No full text
    Laboratory estimates of the normal (Bn) and shear (Bt) compliance of an artificial fracture in a sample of Carboniferous limestone under wet and dry conditions are presented. The experiments were performed over a range of confining pressures (from 5 MPa up to 60 MPa), at ultrasonic frequencies (0.6 MHz to 1.0 MHz), in a Triaxial Hoek cell, using the pulse-echo reflection technique. The results of this study are confirmation that the Bn / Bt ratio of a fracture is dependent on the fluid content, A value of Bn / Bt of less than 0.05 was obtained for our honey saturated (wet) sample which is consistent with the prediction that this ratio should be close to zero for fluid saturated fractures. Values of Bn / Bt for the dry sample are significantly higher and increase with confining pressure from 0.2 to 0.5
    corecore