672 research outputs found

    On SAT representations of XOR constraints

    Full text link
    We study the representation of systems S of linear equations over the two-element field (aka xor- or parity-constraints) via conjunctive normal forms F (boolean clause-sets). First we consider the problem of finding an "arc-consistent" representation ("AC"), meaning that unit-clause propagation will fix all forced assignments for all possible instantiations of the xor-variables. Our main negative result is that there is no polysize AC-representation in general. On the positive side we show that finding such an AC-representation is fixed-parameter tractable (fpt) in the number of equations. Then we turn to a stronger criterion of representation, namely propagation completeness ("PC") --- while AC only covers the variables of S, now all the variables in F (the variables in S plus auxiliary variables) are considered for PC. We show that the standard translation actually yields a PC representation for one equation, but fails so for two equations (in fact arbitrarily badly). We show that with a more intelligent translation we can also easily compute a translation to PC for two equations. We conjecture that computing a representation in PC is fpt in the number of equations.Comment: 39 pages; 2nd v. improved handling of acyclic systems, free-standing proof of the transformation from AC-representations to monotone circuits, improved wording and literature review; 3rd v. updated literature, strengthened treatment of monotonisation, improved discussions; 4th v. update of literature, discussions and formulations, more details and examples; conference v. to appear LATA 201

    Giant infrared intensity of the Peierls mode at the neutral-ionic phase transition

    Full text link
    We present exact diagonalization results on a modified Peierls-Hubbard model for the neutral-ionic phase transition. The ground state potential energy surface and the infrared intensity of the Peierls mode point to a strong, non-linear electron-phonon coupling, with effects that are dominated by the proximity to the electronic instability rather than by electronic correlations. The huge infrared intensity of the Peierls mode at the ferroelectric transition is related to the temperature dependence of the dielectric constant of mixed-stack organic crystals.Comment: 4 pages, 4 figure

    X-Band ESR Determination of Dzyaloshinsky-Moriya Interaction in 2D SrCu2_2(BO3_3)2_2 System

    Full text link
    X-band ESR measurements on a single crystal of SrCu2_2(BO3_3)2_2 system in a temperature range between 10 K and 580 K are presented. The temperature and angular dependence of unusually broad ESR spectra can be explained by the inclusion of antisymmetric Dzyaloshinsky-Moriya (DM) interaction, which yields by far the largest contribution to the linewidth. However, the well-accepted picture of only out-of-plane interdimer DM vectors is not sufficient for explanation of the observed angular dependence. In order to account for the experimental linewidth anisotropy we had to include sizable in-plane components of interdimer as well as intradimer DM interaction in addition to the out-of-plane interdimer one. The nearest-neighbor DM vectors lie perpendicular to crystal anisotropy c-axis due to crystal symmetry. We also emphasize that above the structural phase transition occurring at 395 K dynamical mechanism should be present allowing for instantaneous DM interactions. Moreover, the linewidth at an arbitrary temperature can be divided into two contributions; namely, the first part arising from spin dynamics governed by the spin Hamiltonian of the system and the second part due to significant spin-phonon coupling. The nature of the latter mechanism is attributed to phonon-modulation of the antisymmetric interaction, which is responsible for the observed linear increase of the linewidth at high temperatures.Comment: 17 pages, 4 figures, submitted to PR

    Solitonic approach to the dimerization problem in correlated one-dimensional systems

    Full text link
    Using exact diagonalizations we consider self-consistently the lattice distortions in odd Peierls-Hubbard and spin-Peierls periodic rings in the adiabatic harmonic approximation. From the tails of the inherent spin soliton the dimerization d_\infty of regular even rings is found by extrapolations to infinite ring lengths. Considering a wide region of electron-electron onsite interaction values U>0 compared with the band width 4t_0 at intermediately strong electron-phonon interaction g, known relationships obtained by other methods are reproduced and/or refined within one unified approach: such as the maximum of d_\infty at U \simeq 3 t_0 for g \simeq 0.5 and its shift to zero for g \to g_c \approx 0.7. The hyperbolic tangent shape of the spin soliton is retained for any U and g <~ 0.6. In the spin-Peierls limit the d_\infty are found to be in agreement with results of DMRG computations.Comment: 4 pages, 4 figures, Physical Review B, Rapid Communications, v. 56 (1997) accepte

    Nonlinear optical response and spin-charge separation in one-dimensional Mott insulators

    Full text link
    We theoretically study the nonlinear optical response and photoexcited states of the Mott insulators. The nonlinear optical susceptibility \chi^(3) is calculated by using the exact diagonalization technique on small clusters. From the systematic study of the dependence of \chi^(3) on dimensionality, we find that the spin-charge separation plays a crucial role in enhancing \chi^(3) in the one-dimensional (1D) Mott insulators. Based on this result, we propose a holon-doublon model, which describes the nonlinear response in the 1D Mott insulators. These findings show that the spin-charge separation will become a key concept of optoelectronic devices.Comment: 5 pages with 3 figures, to appear in PRB RC, 15 August 200

    Nonlinear Optical Response in two-dimensional Mott Insulators

    Full text link
    We study the third-order nonlinear optical susceptibility χ(3)\chi^{(3)} and photoexcited states of two-dimensional (2D) Mott insulators by using an effective model in the strong-coupling limit of a half-filled Hubbard model. In the numerically exact diagonalization calculations on finite-size clusters, we find that the coupling of charge and spin degrees of freedom plays a crucial role in the distribution of the dipole-allowed states with odd parity and the dipole-forbidden states with even parity in the photoexcited states. This is in contrast with the photoexcited states in one dimension, where the charge and spin degrees of freedom are decoupled. In the third-harmonic generation (THG) spectrum, main contribution is found to come from the process of three-photon resonance associated with the odd-parity states. As a result, the two-photon resonance process is less pronounced in the THG spectrum. The calculated THG spectrum is compared with recent experimental data. We also find that χ(3)\chi^{(3)} with cross-polarized configuration of pump and probe photons shows spectral distributions similar to χ(3)\chi^{(3)} with co-polarized configuration, although the weight is small. These findings will help the analyses of the experimental data of χ(3)\chi^{(3)} in the 2D Mott insulators.Comment: 9 pages,5 figures,RevTeX

    Dynamical Correlation Functions using the Density Matrix Renormalization Group

    Full text link
    The density matrix renormalization group (DMRG) method allows for very precise calculations of ground state properties in low-dimensional strongly correlated systems. We investigate two methods to expand the DMRG to calculations of dynamical properties. In the Lanczos vector method the DMRG basis is optimized to represent Lanczos vectors, which are then used to calculate the spectra. This method is fast and relatively easy to implement, but the accuracy at higher frequencies is limited. Alternatively, one can optimize the basis to represent a correction vector for a particular frequency. The correction vectors can be used to calculate the dynamical correlation functions at these frequencies with high accuracy. By separately calculating correction vectors at different frequencies, the dynamical correlation functions can be interpolated and pieced together from these results. For systems with open boundaries we discuss how to construct operators for specific wavevectors using filter functions.Comment: minor revision, 10 pages, 15 figure

    Correlation Effect on Peierls Transition

    Full text link
    The effect of correlation on Peierls transition, which is accompanied by a dimerization, t_d, of a bond alternation for transfer energy, has been examined for a half-filled one-dimensional electron system with on-site repulsive interaction (U). By applying the renormalization group method to the interaction of the bosonized Hamiltonian, the dimerization has been calculated variationally and self-consistently with a fixed electron-phonon coupling constant (\lambda) and it is shown that t_d takes a maximum as a function of U. The result is examined in terms of charge gap and spin gap and is compared with that of the numerical simulation by Hirsch [Phys. Rev. Lett 51 (1983) 296]. Relevance to the spin Peierls transition in organic conductors is discussed.Comment: 4 pages, 4 figures, to be published in J. Phys. Soc. Jpn. 71 No.3 (2002

    Molecular crystal approach for pi-conjugated polymers: from PPP Hamiltonian to Holstein model for polaron states

    Full text link
    Starting from the π\pi-electron Pariser-Parr-Pople (PPP) Hamiltonian which includes both strong electron-phonon and electron-electron interactions, we propose some strongly correlated wave functions of increasing quality for the ground state of conjugated polymers. These wavefunctions are built by combining different finite sets of local configurations extended at most over two nearest-neighbour monomers. With this picture, the doped case with one additional particle is expressed in terms of quasi-particle. Thus, the polaron formation problem goes back to the study of a Holstein like model.Comment: 27 pages, 6 eps figs, Revtex; enlarged version. Submitted to Journal of Physics: Condensed Matte
    corecore