5 research outputs found

    Induced Infiltration of Hole-Transporting Polymer into Photocatalyst for Staunch Polymerā€“Metal Oxide Hybrid Solar Cells

    No full text
    For efficient solar cells based on organic semiconductors, a good mixture of photoactive materials in the bulk heterojunction on the length scale of several tens of nanometers is an important requirement to prevent exciton recombination. Herein, we demonstrate that nanoporous titanium dioxide inverse opal structures fabricated using a self-assembled monolayer method and with enhanced infiltration of electron-donating polymers is an efficient electron-extracting layer, which enhances the photovoltaic performance. A calcination process generates an inverse opal structure of titanium dioxide (<70 nm of pore diameters) providing three-dimensional (3D) electron transport pathways. Hole-transporting polymers was successfully infiltrated into the pores of the surface-modified titanium dioxide under vacuum conditions at 200 Ā°C. The resulting geometry expands the interfacial area between hole- and electron-transport materials, increasing the thickness of the active layer. The controlled polymer-coating process over titanium dioxide materials enhanced photocurrent of the solar cell device. Density functional theory calculations show improved interfacial adhesion between the self-assembled monolayer-modified surface and polymer molecules, supporting the experimental result of enhanced polymer infiltration into the voids. These results suggest that the 3D inverse opal structure of the surface-modified titanium dioxide can serve as a favorable electron-extracting layer in further enhancing optoelectronic performance based on organic or organicā€“inorganic hybrid solar cell

    Self-Terminated Artificial SEI Layer for Nickel-Rich Layered Cathode Material via Mixed Gas Chemical Vapor Deposition

    No full text
    Because of the higher specific capacity, nickel-rich layered cathode material has received much attention from the lithium-ion battery community. However, its cycle life is desired to improve further for practical applications, and unstable interface with electrolyte is one of the main capacity fading mechanisms. Here, we report a facile chemical vapor deposition process involving mixed gases of CO<sub>2</sub> and CH<sub>4</sub>, which yields thin and conformal artificial solid-electrolyte-interphase (SEI) layer consisting of alkyl lithium carbonate (LiCO<sub>3</sub>R) and lithium carbonate (Li<sub>2</sub>CO<sub>3</sub>) on nickel-rich active cathode powder. The coating layer protects from side reactions and improves the cycle life and efficiency significantly. Remarkably, the coating process is self-terminated after the thickness reaches āˆ¼10 nm, leading to the coating layer to account for only 0.48 wt %, because of the growing binding energy between the gas mixture and the surface products. The self-termination is characterized by various analytical tools and is well-explained by density functional theory calculations. The current gas phase coating process should be applicable to other battery materials that suffer from continuous side reactions with electrolyte

    Enhanced Electrochemical Stability of a Zwitterionic-Polymer-Functionalized Electrode for Capacitive Deionization

    No full text
    In capacitive deionization, the salt-adsorption capacity of the electrode is critical for the efficient softening of brackish water. To improve the water-deionization capacity, the carbon electrode surface is modified with ion-exchange resins. Herein, we introduce the encapsulation of zwitterionic polymers over activated carbon to provide a resistant barrier that stabilizes the structure of electrode during electrochemical performance and enhances the capacitive deionization efficiency. Compared to conventional activated carbon, the surface-modified activated carbon exhibits significantly enhanced capacitive deionization, with a salt adsorption capacity of āˆ¼2.0 Ɨ 10<sup>ā€“4</sup> mg/mL and a minimum conductivity of āˆ¼43 Ī¼S/cm in the alkali-metal ions solution. Encapsulating the activated-carbon surface increased the number of ions adsorption sites and the surface area of the electrode, which improved the charge separation and deionization efficiency. In addition, the coating layer suppresses side reactions between the electrode and electrolyte, thus providing a stable cyclability. Our experimental findings suggest that the well-distributed coating layer leads to a synergistic effect on the enhanced electrochemical performance. In addition, density functional theory calculation reveals that a favorable binding affinity exists between the alkali-metal ion and zwitterionic polymer, which supports the preferable salt ions adsorption on the coating layer. The results provide useful information for designing more efficient capacitive-deionization electrodes that require high electrochemical stability

    Enhanced Selectivity for CO<sub>2</sub> Adsorption on Mesoporous Silica with Alkali Metal Halide Due to Electrostatic Field: A Molecular Simulation Approach

    No full text
    Since adsorption performances are dominantly determined by adsorbateā€“adsorbent interactions, accurate theoretical prediction of the thermodynamic characteristics of gas adsorption is critical for designing new sorbent materials as well as understanding the adsorption mechanisms. Here, through our molecular modeling approach using a newly developed quantum-mechanics-based force field, it is demonstrated that the CO<sub>2</sub> adsorption selectivity of SBA-15 can be enhanced by incorporating crystalline potassium chloride particles. It is noted that the induced intensive electrostatic fields around potassium chloride clusters create gas-trapping sites with high selectivity for CO<sub>2</sub> adsorption. The newly developed force field can provide a reliable theoretical tool for accurately evaluating the gas adsorption on given adsorbents, which can be utilized to identify good gas adsorbents

    CO<sub>2</sub> Enhanced Chemical Vapor Deposition Growth of Few-Layer Graphene over NiO<sub><i>x</i></sub>

    No full text
    The use of mild oxidants in chemical vapor deposition (CVD) reactions has proven enormously useful. This was also true for the CVD growth of carbon nanotubes. As yet though, the use of mild oxidants in the CVD of graphene has remained unexplored. Here we explore the use of CO<sub>2</sub> as a mild oxidant during the growth of graphene over Ni with CH<sub>4</sub> as the feedstock. Both our experimental and theoretical findings provide in-depth insight into the growth mechanisms and point to the mild oxidants playing multiple roles. Mild oxidants lead to the formation of a suboxide in the Ni, which suppresses the bulk diffusion of C species suggesting a surface growth mechanism. Moreover, the formation of a suboxide leads to enhanced catalytic activity at the substrate surface, which allows reduced synthesis temperatures, even as low as 700 Ā°C. Even at these low temperatures, the quality of the graphene is exceedingly high as indicated by a negligible D mode in the Raman spectra. These findings suggest the use of mild oxidants in the CVD fabrication as a whole could have a positive impact
    corecore