16 research outputs found

    A decentralized control strategy to bring back frequency and share reactive power in isolated microgrids with virtual power plant

    No full text
    In this paper, a novel Power-Frequency Droop Control (PFDC) is introduced to perfectly bring back the system frequency and share the reactive power in isolated microgrid with virtual power plant (VPP). The frequency-based power delivery must be essentially implemented in VPP which can operate as a conventional synchronous generator. It has been attained by enhancing the power processing unit of each VPP to operate as an active generator. The inverter coupling impedance which has been assigned by the virtual impedance technique has reduced the affected power coupling resulting from line resistance. The reference has been subsequently adjusted to compensate the frequency deviation caused by load variation and retrieve the VPP frequency to its nominal value. In addition, the line voltage drop has compensated the voltage drop and load sharing error to obliterate the reactive power sharing imprecision resulting from the voltage deviation. The voltage feedback confirms the correct voltage after compensating the voltage drop. As an illustration, conventional PFDC after a load change cannot restore the system frequency which is deviated from 50 Hz and rested in 49.9 Hz while, proposed PFDC strategy fades away the frequency deviation via compensating the variation of the frequency reference. Likewise, the frequency restoration factor ( γ) has an effective role in retrieving the system frequency, i.e., the restoration rate of the system frequency is in proportion with γ. As a whole, the simulation results have pointed to the high performance of proposed strategy in an isolated microgrid

    Scenario-based stochastic optimal operation of wind/PV/FC/CHP/boiler/tidal/energy storage system considering DR programs and uncertainties

    No full text
    Abstract Background Micro-grid (MG) can be described as a group of controllable loads and distributed energy resources that can be connected and disconnected from the main grid and utilized in grid-connected or islanded modes considering certain electrical constraints. Methods The objective of this article are as follows: (1) predict the uncertainties through the hybrid method of WT-ANN-ICA and (2) determine the optimal generation strategy of a MG containing wind farms (WFs), photovoltaic (PV), fuel cell (FC), combined heat and power (CHP) units, tidal steam turbine (TST), and also boiler and energy storage devices (ESDs). The uncertainties include wind speed, tidal steam speed, photovoltaic power generation (PVPG), market price, power, and thermal load demand. For modeling uncertainties, an effort has been made to predict uncertainties through the hybrid method of wavelet transform (WT) in order to reduce fluctuations in the historical input data. An improved artificial neural network (ANN) based on the nonlinear structure is applied for better training and learning. Furthermore, the imperialist competitive algorithm (ICA) is applied to find the best weights and biases for minimizing the mean square error of predictions. Result The scenario-based stochastic optimization problem is proposed to determine the optimal points for the energy resources generation and to maximize the expected profit considering demand response (DR) programs and uncertainties. Conclusions In this study, three cases are assessed to confirm the performance of the proposed method. In the first case study programming, MG is isolated from grid. In the second case study, which is grid-connected mode, the WT-ANN-ICA and WT-ANN uncertainty prediction methods are compared. In the third case, which is grid-connected mode, the effect of DR programs on the expected profit of energy resources is assessed

    Predictive torque control of induction motor drive with reduction of torque and flux ripple

    No full text
    The continuing efforts for reduction of the torque and flux ripples using Finite Set Model Predictive Direct Torque Control methods (FS-MPDTC) have been currently drowning a great attention from the academic communities and industrial applications in the field of electrical drives. The major problem of high torque and flux ripples refers to the consideration of just one active voltage vector at the whole control period. Implementation of two or more voltage vectors at each sampling time has recently been adopted as one of the practical techniques to reduce both the torque and flux ripples. Apart from the calculating challenge of the effort control, the parameter dependency and complexity of the duty ratio relationships lead to reduction of the system robustness. those are two outstanding drawbacks of these methods. In this paper, a finite set of the voltage vectors with a finite set of duty cycles are employed to implement the FS-MPDTC of induction motor. Based on so-called Discrete Duty Cycle- based FS-MPDTC (DDC-FS-MPDTC), a base duty ratio is firstly determined based on the equivalent reference voltage. This duty ratio is certainly calculated using the command values of the control system, while the motor parameters are not used in this algorithm. Then, two sets of duty ratios with limit members are constructed for two adjacent active voltage vectors supposed to apply at each control period. Finally, the prediction and the cost function evaluation are performed for all of the preselected voltage vectors and duty ratios. However, the prediction and the optimization operations are performed for only 12 states of inverter. Meanwhile, time consuming calculations related to SVM has been eliminated. So, the robustness and complexity of the control system have been respectively decreased and increased, and both the flux and torque ripples are reduced in all speed ranges. The simulation results have verified the damping performance of the proposed method to reduce the ripples of both the torque and flux, and accordingly the experimental results have strongly validated the aforementioned statement

    Large Signal Stabilization of Hybrid AC/DC Micro-Grids Using Nonlinear Robust Controller

    No full text
    This paper presents a robust nonlinear integrated controller to improve stability of hybrid AC/DC micro-grids under islanding mode. The proposed controller includes two independent controllers where each one is responsible to control one part of the system. First controller will improve the stability of input DC/DC converter. Using this controller, the voltage of DC bus is fully stabilized such that when a large disturbance occurs, its voltage will become constant without any significant dynamic. The necessity of DC bus regulation which has not been considered in previous studies, is imminent as it not only improves voltage stability of the micro-grid but also protects consumers which are directly connected to the DC bus, against voltage variations. Frequency stability of the micro-grid is provided by the second proposed controller which is applied to output DC/AC converter of the micro-grid. Adaptive method is used to make the controllers proposed in this paper, robust. Duty cycle of converters switches are adjusted such that voltage and frequency of the micro-grid are set on the desired value in minimum possible time under transient disturbances and uncertainty of the loads as well as micro-sources characteristics

    Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages

    No full text
    Five-phase permanent magnet synchronous motors (PMSM) have special applications in which highly accurate speed and torque control of the motor are a strong requirement. Direct Torque Control (DTC) is a suitable method for the driver structure of these motors. If in this method, instead of using a common five-phase voltage source inverter, a three-phase to five-phase matrix converter is used, the low-frequency current harmonics and the high torque ripple are limited, and an improved input power factor is obtained. Because the input voltages of such converters are directly supplied by input three-phase supply voltages, an imbalance in the voltages will cause problems such as unbalanced stator currents and electromagnetic torque fluctuations. In this paper, a new method is introduced to remove speed and torque oscillator factors. For this purpose, motor torque equations were developed and the oscillation components created by the unbalanced source voltage, determined. Then, using the active and reactive power reference generator, the controller power reference was adjusted in such a way that the electromagnetic torque of the motor did not change. By this means, a number of features including speed, torque, and flux of the motor were improved in terms of the above-mentioned conditions. Simulations were analyzed using Matlab/Simulink software
    corecore