10,505 research outputs found

    Coulomb-blockade effect in nonlinear mesoscopic capacitors

    Get PDF
    We consider an interacting quantum dot working as a coherent source of single electrons. The dot is tunnel coupled to a reservoir and capacitively coupled to a gate terminal with an applied ac potential. At low frequencies, this is the quantum analog of the RC circuit with a purely dynamical response. We investigate the quantized dynamics as a consequence of ac pulses with large amplitude. Within a Keldysh-Green function formalism we derive the time-dependent current in the Coulomb blockade regime. Our theory thus extends previous models that considered either noninteracting electrons in nonlinear response or interacting electrons in the linear regime. We prove that the electron emission and absorption resonances undergo a splitting when the charging energy is larger than the tunnel broadening. For very large charging energies, the additional peaks collapse and the original resonances are recovered, though with a reduced amplitude. Quantization of the charge emitted by the capacitor is reduced due to Coulomb repulsion and additional plateaus arise. Additionally, we discuss the differential capacitance and resistance as a function of time. We find that to leading order in driving frequency the current can be expressed as a weighted sum of noninteracting currents shifted by the charging energy.Comment: 13 pages, 9 figures. Minor changes. Published versio

    Quasinormal frequencies and thermodynamic quantities for the Lifshitz black holes

    Full text link
    We find the connection between thermodynamic quantities and quasinormal frequencies in Lifshitz black holes. It is shown that the globally stable Lifshitz black holes have pure imaginary quasinormal frequencies. We also show that by employing the Maggiore's method, both the horizon area and the entropy can be quantized for these black holes.Comment: 21 pages, no figures, version to appear in PR
    • …
    corecore