2 research outputs found

    Mixed N‑Heterocyclic Carbene–Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    No full text
    In order to facilitate oxidative addition chemistry of <i>fac</i>-coordinated rhodium­(I) and iridium­(I) compounds, carbene–bis­(oxazolinyl)­phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB­(Ox<sup>Me2</sup>)<sub>2</sub>(Im<sup><i>t</i>Bu</sup>H) (H­[<b>1</b>]; Ox<sup>Me2</sup> = 4,4-dimethyl-2-oxazoline; Im<sup><i>t</i>Bu</sup>H = 1-<i>tert</i>-butylimidazole) and PhB­(Ox<sup>Me2</sup>)<sub>2</sub>(Im<sup>Mes</sup>H) (H­[<b>2</b>]; Im<sup>Mes</sup>H = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K­[<b>1</b>] and K­[<b>2</b>], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup><i>t</i>Bu</sup>}­Rh­(η<sup>4</sup>-C<sub>8</sub>H<sub>12</sub>) (<b>3</b>), {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}­Rh­(η<sup>4</sup>-C<sub>8</sub>H<sub>12</sub>) (<b>4</b>), {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}­Rh­(CO)<sub>2</sub> (<b>5</b>), {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}­Ir­(η<sup>4</sup>-C<sub>8</sub>H<sub>12</sub>) (<b>6</b>), and {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}­Ir­(CO)<sub>2</sub> (<b>7</b>) are synthesized along with To<sup>M</sup>M­(η<sup>4</sup>-C<sub>8</sub>H<sub>12</sub>) (M = Rh (<b>8</b>); M = Ir (<b>9</b>); To<sup>M</sup> = tris­(4,4-dimethyl-2-oxazolinyl)­phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (<i>tert</i>-butyl vs mesityl), effects of replacing an oxazoline in To<sup>M</sup> with a carbene donor, and the influence of the donor ligand (CO vs C<sub>8</sub>H<sub>12</sub>). The reactions of K­[<b>2</b>] and [M­(μ-Cl)­(η<sup>2</sup>-C<sub>8</sub>H<sub>14</sub>)<sub>2</sub>]<sub>2</sub> (M = Rh, Ir) provide {κ<sup>4</sup>-PhB­(Ox<sup>Me2</sup>)­<sub>2</sub>Im<sup>Mes<sup>′</sup></sup>CH<sub>2</sub>}­Rh­(μ-H)­(μ-Cl)­Rh­(η<sup>2</sup>-C<sub>8</sub>H<sub>14</sub>)<sub>2</sub> (<b>10</b>) and {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}­IrH­(η<sup>3</sup>-C<sub>8</sub>H<sub>13</sub>) (<b>11</b>). In the former compound, a spontaneous oxidative addition of a mesityl <i>ortho</i>-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds <b>5</b> and <b>7</b> result in C–H bond oxidative addition providing the compounds {κ<sup>4</sup>-PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes<sup>′</sup></sup>CH<sub>2</sub>}­RhH­(CO) (<b>12</b>) and {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}­IrH­(Ph)­CO (<b>13</b>). In <b>12</b>, oxidative addition results in cyclometalation of the mesityl <i>ortho</i>-methyl similar to <b>10</b>, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized <i>cis</i>-[Ir]­(H)­(Ph) complex. Alternatively, the rhodium carbonyl <b>5</b> or iridium isocyanide {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}­Ir­(CO)­CN<sup><i>t</i></sup>Bu (<b>15</b>) reacts with PhSiH<sub>3</sub> in the dark to form the silyl compound {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}­RhH­(SiH<sub>2</sub>Ph)­CO (<b>14</b>) or {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}­IrH­(SiH<sub>2</sub>Ph)­CN<sup><i>t</i></sup>Bu (<b>17</b>). These examples demonstrate the enhanced thermal reactivity of {PhB­(Ox<sup>Me2</sup>)<sub>2</sub>Im<sup>Mes</sup>}-supported iridium and rhodium carbonyl compounds in comparison to tris­(oxazolinyl)­borate, tris­(pyrazolyl)­borate, and cyclopentadienyl-supported compounds

    Organometallic Complexes of Bulky, Optically Active, <i>C</i><sub>3</sub>‑Symmetric Tris(4<i>S</i>‑isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (To<sup>P</sup>*)

    No full text
    A bulky, optically active monoanionic scorpionate ligand, tris­(4<i>S</i>-isopropyl-5,5-dimethyl-2-oxazolinyl)­phenylborate (To<sup>P</sup>*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li­[To<sup>P</sup>*] (<b>1</b>). That compound is readily converted to the thallium complex Tl­[To<sup>P</sup>*] (<b>2</b>) and to the acid derivative H­[To<sup>P</sup>*] (<b>3</b>). Group 7 tricarbonyl complexes To<sup>P</sup>*M­(CO)<sub>3</sub> (M = Mn (<b>4</b>), Re (<b>5</b>)) are synthesized by the reaction of MBr­(CO)<sub>5</sub> and Li­[To<sup>P</sup>*] and are crystallographically characterized. The ν<sub>CO</sub> bands in their infrared spectra indicate that π back-donation in the rhenium compounds is greater with To<sup>P</sup>* than with non-methylated tris­(4<i>S</i>-isopropyl-2-oxazolinyl)­phenylborate (To<sup>P</sup>). The reaction of H­[To<sup>P</sup>*] and ZnEt<sub>2</sub> gives To<sup>P</sup>*ZnEt (<b>6</b>), while To<sup>P</sup>*ZnCl (<b>7</b>) is synthesized from Li­[To<sup>P</sup>*] and ZnCl<sub>2</sub>. The reaction of To<sup>P</sup>*ZnCl and KO<i>t</i>Bu followed by addition of PhSiH<sub>3</sub> provides the zinc hydride complex To<sup>P</sup>*ZnH (<b>8</b>). Compound <b>8</b> is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity
    corecore