7 research outputs found

    Nanosat Formation Flying Design for SNIPE Mission

    Get PDF
    This study designs and analyzes satellite formation flying concepts for the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE) mission, that will observe the near-Earth space environment using four nanosats. To meet the requirements to achieve the scientific objectives of the SNIPE mission, three formation flying concepts are analyzed: a crossshape formation, a square-shape formation, and a cross-track formation. Of the three formation flying scenarios, the crosstrack formation scenario is selected as the final scenario for the SNIPE mission. The result of this study suggests a relative orbit control scenario for formation maintenance and reconfiguration, and the initial relative orbits of the four nanosats meeting the formation requirements and thrust limitations of the SNIPE mission. The formation flying scenario is validated by calculating the accumulated total thrust required for the four nanosats. If the cross-track formation scenario presented in this study is applied to the SNIPE mission, it is expected that the mission will be successfully accomplished

    Development of Formation Flying CubeSats and Operation Systems for the CANYVAL-C Mission: Launch and Lessons Learned

    Get PDF
    The CubeSat Astronomy NASA and Yonsei using Virtual telescope ALignment for Coronagraph (CANYVAL-C) is a technology demonstration mission that shows the concept of a virtual space telescope using two CubeSats in formation flying. The final goal of the mission is to obtain several images of the solar corona during an artificial solar eclipse created by the two CubeSats, Timon (1U CubeSat) and Pumbaa (2U CubeSat). To implement this mission, two CubeSats in formation flying and a ground segment have been developed. The CubeSats were constructed mainly with commercial off the shelf components, sharing the bus architecture. The payload of each CubeSat is a visible camera and an occulter to block the light from the photosphere of the Sun. The occulter is composed of tape measures and a black-colored polyimide film; the system size is smaller than 0.5U (10 × 10 × 5 cm3) while it stowed and enlarged to 0.75 × 0.75 m2 after spreading the film. The 3D-printed propulsion system is smaller than 0.5U and facilitates accurate positioning maneuvers of Pumbaa. The on-board computer has multi-task processing capabilities and a space-saving configuration which is integrated with the GNSS receiver and the UHF transceiver. The core technology for the mission implementation is the precise formation flying guidance, navigation, and control system with a cold-gas propulsion system and an inter-satellite link system. The specification of each CubeSat system was evaluated using numerical simulations and ground testing. To operate CubeSats, the ground segment was constructed with some components, including the UHF ground station (UGS), flight dynamics system (FDS), mission analysis and planning system (MAPS), and spacecraft operation system (SOS). Each component works under the environment of an integrated graphic user interface. In particular, the UGS handles the RF communication, data storage, and instrument control for tracking CubeSats. The FDS processes the navigation data to precisely estimate absolute position and velocity. Then, the MAPS determines the allowable mission schedule and parameter set for implementing maneuvers of each CubeSat. Using the MAPS, feasibility of the mission operation canbe ensured through numerical simulations based on the solutions from the FDS. Finally, the SOS is the interface system between each component, processing telemetry and generating telecommand. The CubeSats were launched on March 22, 2021, by Soyuz-2.1a with a Fregat stage

    Numerical Analysis of Relative Orbit Control Strategy for CANYVAL-X Mission

    No full text
    This paper suggests a relative orbit control strategy for the CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment (CANYVAL-X) mission whose main goal is to demonstrate an essential technique, which is an arrangement among two satellites and a specific celestial object, referred to as inertial alignment, for a next-generation virtual space telescope. The inertial alignment system is a relative orbit control system and has requirements for the relative state. Through the proposed orbit control strategy, consisting of separation, proximity keeping, and reconfiguration, the requirements will be satisfied. The separation direction of the two CubeSats with respect to the orbital plane is decided to provide advantageous initial condition to the orbit controller. Proximity keeping is accomplished by differential atmospheric drag control (DADC), which generates acceleration by changing the spacecraft’s effective cross section via attitude control rather than consuming propellant. Reconfiguration is performed to meet the requirements after proximity keeping. Numerical simulations show that the requirements can be satisfied by the relative orbit control strategy. Furthermore, through numerical simulations, it is demonstrated that the inertial alignment can be achieved. A beacon signal had been received for several months after the launch; however, we have lost the signal at present

    Design of Orbit Controls for a Multiple CubeSat Mission Using Drift Rate Modulation

    No full text
    For the low-cost improvement of laser communication, which is critical for various applications such as surveillance systems, a study was conducted on relative distance control based on orbital drift rate modulations for multiple CubeSats during formation flying. The VISION mission covered in this paper comprises two CubeSats to demonstrate laser communication technology in space. During the mission, the deputy CubeSat changes the relative distance to execute mission objectives within various scenarios. Impulsive controls decrease, maintain, and increase the relative distance between the CubeSats by changing the orbital drift rates. The simulation results indicated that the desired orbital operation can be conducted within a given ΔV budget. In addition, the errors in the orbit determination, thrust maneuvers, and time synchronization were analyzed to satisfy the mission requirements. The mass-to-area ratio should be matched to adjust the relative distance between satellites with different properties by drift rate modulation. The proposed orbit control method appropriately operated the VISION mission by adjusting the drift rate modulation. The results of this study serve as a basis for the development of complex orbit control simulations and detailed designs that reflect the characteristics of the thrust module and operational aspects

    Mission Design and Orbit-Attitude Control Algorithms Development of Multistatic SAR Satellites for Very-High-Resolution Stripmap Imaging

    No full text
    This study designs a multistatic synthetic aperture radar (SAR) formation-flying system for very-high-resolution stripmap imaging (VHRSI) using manufacturable SAR microsatellites. Multistatic SAR formation specifications for VHRSI are derived based on the SAR image theory. For the simultaneous multi-satellite operation, the advantages of the autonomous orbit and attitude control are prominent in terms of the workload of the ground station or the efficient performance of missions. Therefore, the autonomous relative-orbit-control algorithm using relative orbital elements is developed to maintain the designed multistatic SAR formation. Additionally, an autonomous attitude-control algorithm for multistatic SAR imaging is designed by applying the optimal right-ascension of the descending node (RADN) sector concept. Finally, the resolution improvement of VHRSI is verified through multistatic SAR imaging simulations. The multistatic SAR formation is designed with three satellites separated by 7.5 km each in the along-track direction. Autonomous relative orbit control maintains the relative position error within 45 m (3σ). Additionally, the autonomous attitude control simulation verifies that the satellites perform attitude maneuvers suitable for the operation mode, and the pointing error is maintained within 0.0035° (3σ). The spatial resolution of the multistatic SAR system for VHRSI is 0.95 × 0.96 m, which satisfies the very-high-spatial-resolution requirement

    Performance Investigation of Superplastic Shape Memory Alloy-Based Vibration Isolator for X-Band Active Small SAR Satellite of S-STEP under Acoustic and Random Vibration Environments

    No full text
    In a launch environment, all satellites are subjected to severe random vibration and acoustic loads owing to rocket separation, airflow, and injection/combustion of the fuel. Structural vibrations induced by mechanical loads cause the malfunction of vibration-sensitive components in a satellite, leading to failures during the launch process or an on-orbit mission. Therefore, in this study, a shape memory alloy-based vibration isolator was used on the connection between the launch vehicle and satellite to reduce the vibration transmission to a satellite. The vibration isolator exhibited a high performance in the vibration isolation, owing to the dynamic properties of super-elasticity and high damping. The vibration-reduction performance of the vibration isolator was experimentally verified using random vibration and acoustic tests in a structural thermal model of the satellite developed in the synthetic aperture radar technology experimental project. Owing to the super-elasticity and high attenuation characteristics of the vibration isolator, it was possible to significantly reduce the random vibration of the satellite in the launch environment. Although the mechanical load of the acoustic test mainly excited the antenna on the upper side of the satellite rather than the bottom side, the results of the acoustic test showed the same trend as the random vibration test. From this perspective, the vibration isolator can contribute to saving the costs required for satellite development. These advantages have made it possible to develop satellites according to the new space paradigm, which is a trend in the space industry worldwide

    The role of the addition of ovarian suppression to tamoxifen in young women with hormone-sensitive breast cancer who remain premenopausal or regain menstruation after chemotherapy (ASTRRA): Study protocol for a randomized controlled trial and progress

    No full text
    Background: Ovarian function suppression (OFS) has been shown to be effective as adjuvant endocrine therapy in premenopausal women with hormone receptor-positive breast cancer. However, it is currently unclear if addition of OFS to standard tamoxifen therapy after completion of adjuvant chemotherapy results in a survival benefit. In 2008, the Korean Breast Cancer Society Study Group initiated the ASTRRA randomized phase III trial to evaluate the efficacy of OFS in addition to standard tamoxifen treatment in hormone receptor-positive breast cancer patients who remain or regain premenopausal status after chemotherapy. Methods: Premenopausal women with estrogen receptor-positive breast cancer treated with definitive surgery were enrolled after completion of neoadjuvant or adjuvant chemotherapy. Ovarian function was assessed at the time of enrollment and every 6 months for 2 years by follicular-stimulating hormone levels and bleeding history. If ovarian function was confirmed as premenopausal status, the patient was randomized to receive 2 years of goserelin plus 5 years of tamoxifen treatment or 5 years of tamoxifen alone. The primary end point will be the comparison of the 5-year disease-free survival rates between the OFS and tamoxifen alone groups. Patient recruitment was finished on March 2014 with the inclusion of a total of 1483 patients. The interim analysis will be performed at the time of the observation of the 187th event. Discussion: This study will provide evidence of the benefit of OFS plus tamoxifen compared with tamoxifen only in premenopausal patients with estrogen receptor-positive breast cancer treated with chemotherapy
    corecore