558 research outputs found

    Design of Logic-Compatible Embedded Flash Memories for Moderate Density On-Chip Non-Volatile Memory Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2013. Major: Electrical Engineering. Advisor: Chris H. Kim. 1 computer file (PDF); xx, 129 pages.An on-chip embedded NVM (eNVM) enables a zero-standby power system-on-a-chip with a smaller form factor, faster access speed, lower access power, and higher security than an off-chip NVM. Differently from the high density eNVM technologies such as dual-poly eflash, FeRAM, STT-MRAM, and RRAM that typically require process overhead beyond standard logic process, the moderate density eNVM technologies such as e-fuse, anti-fuse, and single-poly embedded flash (eflash) can be fabricated in a standard logic process with no process overhead. Among them, a single-poly eflash is a unique multiple-time programmable moderate density eNVM, while it is expected to play a key role in mitigating variability and reliability issues of the future VLSI technologies; however, the challenges such as a high voltage disturbance, an implementation of logic compatible High Voltage Switch (HVS), and a limited sensing margin are required to be solved for its implementation using a standard I/O device. This thesis focuses on alleviating such challenges of the single-poly eflash memory with three single-poly eflash designs proposed in a generic logic process for moderate density eNVM applications. Firstly, the proposed 5T eflash features a WL-by-WL accessible architecture with no disturbance issue of the unselected WL cells, an overstress-free multi-story HVS expanding the cell sensing margin, and a selective WL refresh scheme for the higher cell endurance. The most favorable eflash cell configuration is also studied when the performance, endurance, retention, and disturbance characteristics are all considered. Secondly, the proposed 6T eflash features the bit-by-bit re-write capability for the higher overall cell endurance, while not disturbing the unselected WL cells. The logic compatible on-chip charge pump to provide the appropriate high voltages for the proposed eflash operations is also discussed. Finally, the proposed 10T eflash features a multi-configurable HVS that does not require the boosted read supplies, and a differential cell architecture with improved retention time. All these proposed eflash memories were implemented in a 65nm standard logic process, and the test chip measurement results confirmed the functionality of the proposed designs with a reasonable retention margin, showing the competitiveness of the proposed eflash memories compared to the other moderate density eNVM candidates

    Coding scheme for 3D vertical flash memory

    Full text link
    Recently introduced 3D vertical flash memory is expected to be a disruptive technology since it overcomes scaling challenges of conventional 2D planar flash memory by stacking up cells in the vertical direction. However, 3D vertical flash memory suffers from a new problem known as fast detrapping, which is a rapid charge loss problem. In this paper, we propose a scheme to compensate the effect of fast detrapping by intentional inter-cell interference (ICI). In order to properly control the intentional ICI, our scheme relies on a coding technique that incorporates the side information of fast detrapping during the encoding stage. This technique is closely connected to the well-known problem of coding in a memory with defective cells. Numerical results show that the proposed scheme can effectively address the problem of fast detrapping.Comment: 7 pages, 9 figures. accepted to ICC 2015. arXiv admin note: text overlap with arXiv:1410.177

    Upper torso and pelvis linear velocity during the downswing of elite golfers

    Get PDF
    BACKGROUND: During a golf swing, analysis of the movement in upper torso and pelvis is a key step to determine a motion control strategy for accurate and consistent shots. However, a majority of previous studies that have evaluated this movement limited their analysis only to the rotational movement of segments, and translational motions were not examined. Therefore, in this study, correlations between translational motions in the 3 axes, which occur between the upper torso and pelvis, were also examined. METHODS: The experiments were carried out with 14 male pro-golfers (age: 29 ± 8 years, career: 8.2 ± 4.8years) who registered in the Korea Professional Golf Association (KPGA). Six infrared cameras (VICON; Oxford Metrics, Oxford, UK) and SB-Clinc software (SWINGBANK Ltd, Korea) were used to collect optical marker trajectories. The center of mass (CoM) of each segment was calculated based on kinematic principal. In addition, peak value of CoM velocity and the time that each peak occurred in each segment during downswing was calculated. Also, using cross-correlation analysis, the degree of coupling and time lags of peak values occurred between and within segments (pelvis and upper torso) were investigated. RESULTS: As a result, a high coupling strength between upper torso and pelvis with an average correlation coefficient = 0.86 was observed, and the coupling between segments was higher than that within segments (correlation coefficient = 0.81 and 0.77, respectively). CONCLUSIONS: Such a high coupling at the upper torso and pelvis can be used to reduce the degree of motion control in the central nervous system and maintain consistent patterns in the movement. The result of this study provides important information for the development of optimal golf swing movement control strategies in the future

    Story Visualization by Online Text Augmentation with Context Memory

    Full text link
    Story visualization (SV) is a challenging text-to-image generation task for the difficulty of not only rendering visual details from the text descriptions but also encoding a long-term context across multiple sentences. While prior efforts mostly focus on generating a semantically relevant image for each sentence, encoding a context spread across the given paragraph to generate contextually convincing images (e.g., with a correct character or with a proper background of the scene) remains a challenge. To this end, we propose a novel memory architecture for the Bi-directional Transformers with an online text augmentation that generates multiple pseudo-descriptions as supplementary supervision during training, for better generalization to the language variation at inference. In extensive experiments on the two popular SV benchmarks, i.e., the Pororo-SV and Flintstones-SV, the proposed method significantly outperforms the state of the arts in various evaluation metrics including FID, character F1, frame accuracy, BLEU-2/3, and R-precision with similar or less computational complexity.Comment: ICCV 202

    Out-of-Plane Strengthening of Unreinforced Masonry Walls by Glass Fiber-Reinforced Polyurea

    Get PDF
    Fiber-reinforced polymer reinforcement or polyurea reinforcement techniques are applied to strengthen unreinforced masonry walls (UMWs). The purpose of this experimental study is to verify the out-of-plane reinforcing effect of sprayed glass fiber-reinforced polyurea (GFRPU), which is a composite elastomer made of polyurea and milled glass fibers on UMW. The out-of-plane strengths and ductile behaviors based on various coating shapes are compared in this study. An empirical formula to describe the degree of reinforcement on the out-of-plane strength of the UMW is derived based on the experimental results. It is observed that the peak load-carrying capacity, ductility, and energy absorption capacity gradually improve with an increase in the strengthening degree or area. Compared with the existing masonry wall reinforcement method, the GFRPU technique is a construction method that can help improve the safety performance along with ease of construction and economic efficiency. Doi: 10.28991/CEJ-2022-08-01-011 Full Text: PD

    In-Plane Strengthening of Unreinforced Masonry Walls by Glass Fiber-Reinforced Polyurea

    Get PDF
    Strengthening techniques have been employed in Korea to unreinforced masonry walls (UMWs) for several years to protect them from damage caused by the intermittent occurrence of earthquakes. Polyurea, which has a high tensile strength and elongation rate, can be utilized as a strengthening material to enhance the in-plane strength and ductility of UMWs. Glass fiber-reinforced polyurea (GFRPU) is a composite elastomer manufactured by progressively adding milled glass fiber to polyurea. The purpose of this study is to investigate the enhancement of the in-plane strength and ductility of UMWs using GFRPU, depending on the shape of the GFRPU coating on the wall. Four masonry wall specimens are tested with test variables of the number of strengthening sides and coating shapes. It is illustrated that the GFRPU reinforcement of masonry wall leads to enhanced load-carrying capacity, ductility, and energy absorption. An empirical formula to represent the degree of strengthening effected by GFRPU is proposed in this study. Doi: 10.28991/cej-2021-03091782 Full Text: PD

    MOMENT RESISTANCE PERFORMANCE OF LARCH LAMINATED TIMBER BEAM-COLUMN JOINTS REINFORCED WITH CFRP

    Get PDF
    This study evaluates the moment resisting capacity of the drift pin larch beam-column joint with slotted-in steel plates of larch laminated timber. It is reinforced with carbon fiber reinforced plastic (CFRP) to suppress the brittle fracture of the beam-column joint and improve the joint capacity using larch laminated timber, a wood material manufactured by multi-layering of timber as a structural member of heavy timber.The average maximum moment capacity of the control specimen was 16.9 kN·m and the average maximum moments of the Type-A (volume ratio of joint reinforced with CFRP: 3.6%) and Type-B (volume ratio of joint reinforced with CFRP: 5.4%) were increased by 46% and 62%, respectively, compared to that of the control specimen. The capacity of the joint, such as the average yield capacity, ultimate moment capacity, and ductility ratio, of the control, Type-A, and Type-B specimens increased as the reinforcement ratio of the CFRP increased. For the failure mode of the control specimen, splitting failure occurred in both the column and beam members in the end distance direction. However, the splitting failure did not occur in the beam member due to the improvement of the joint and ductility of the specimens reinforced with the CFRP. The Type-A specimen had improved joint capacity and ductility compared to the control specimen; however, brittle failure occurred owing to the external force exceeding the joint capacity. However, in some of the Type-B specimens, the splitting failure did not occur in the column and beam members due to the CFRP reinforcement. Particularly, the Type-B3 specimen exhibited ductility

    Three-way Translocation of MLL/MLLT3, t(1;9;11)(p34.2;p22;q23), in a Pediatric Case of Acute Myeloid Leukemia

    Get PDF
    The chromosome band 11q23 is a common target region of chromosomal translocation in different types of leukemia, including infantile leukemia and therapy-related leukemia. The target gene at 11q23, MLL, is disrupted by the translocation and becomes fused to various translocation partners. We report a case of AML with a rare 3-way translocation involving chromosomes 1, 9, and 11: t(1;9;11)(p34.2;p22;q23). A 3-yr-old Korean girl presented with a 5-day history of fever. A diagnosis of AML was made on the basis of the morphological evaluation and immunophenotyping of bone marrow specimens. Flow cytometric immunophenotyping showed blasts positive for myeloid lineage markers and aberrant CD19 expression. Karyotypic analysis showed 46,XX,t(1;9;11)(p34.2;p22;q23) in 19 of the 20 cells analyzed. This abnormality was involved in MLL/MLLT3 rearrangement, which was confirmed by qualitative multiplex reverse transcription-PCR and interphase FISH. She achieved morphological and cytogenetic remission after 1 month of chemotherapy and remained event-free for 6 months. Four cases of t(1;9;11)(v;p22;q23) have been reported previously in a series that included cases with other 11q23 abnormalities, making it difficult to determine the distinctive clinical features associated with this abnormality. To our knowledge, this is the first description of t(1;9;11) with clinical and laboratory data, including the data for the involved genes, MLL/MLLT3

    Neovesical-Urethral Anastomotic Stricture Successfully Treated by Ureteral Dilation Balloon Catheter

    Get PDF
    Neovesical-urethral anastomotic stricture is a complication of orthotopic neobladder, with a reported incidence of 2.7% to 8.8%. Strictures of the neovesico-urethral anastomotic site can be treated with regular self-dilation, but high-grade strictures require a surgical procedure involving incision by electrocautery or cold knife. Here we describe a grade III neovesical-urethral anastomotic stricture after an orthotopic bladder substitution that was successfully treated by use of a ureteral dilation balloon catheter
    • …
    corecore